Citation: | Sun Honggen,Han Yansong,Jiang Wei, et al. Impacts of major volcanic activities on the frequency of Northwest Pacific tropical cyclones from 1900 to 2022[J]. Haiyang Xuebao,2024, 46(11):1–12 doi: 10.12284/hyxb2024130 |
[1] |
端义宏, 余晖, 伍荣生. 热带气旋强度变化研究进展[J]. 气象学报, 2005, 63(5): 636−645. doi: 10.3321/j.issn:0577-6619.2005.05.009
Duan Yihong, Yu Hui, Wu Rongsheng. Review of the research in the intensity change of tropical cyclone[J]. Acta Meteorologica Sinica, 2005, 63(5): 636−645. doi: 10.3321/j.issn:0577-6619.2005.05.009
|
[2] |
赵鹏国, 银燕, 肖辉, 等. 气溶胶对热带气旋强度及电过程影响的数值模拟研究[J]. 气象科学, 2016, 36(1): 1−9. doi: 10.3969/2015jms.0012
Zhao Pengguo, Yin Yan, Xiao Hui, et al. Numerical simulation of the effects of aerosol on the intensity and electrification of tropical cyclone[J]. Journal of the Meteorological Sciences, 2016, 36(1): 1−9. doi: 10.3969/2015jms.0012
|
[3] |
中华人民共和国应急管理部. 应急管理部发布2019年8月全国自然灾害基本情况[EB/OL]. (2019-09-04). https://www.mem.gov.cn/xw/bndt/201909/t20190904_336230.shtml. (查阅网上资料,未找到引用日期信息,请确认)
Ministry of Emergency Management of the People’s Republic of China. Basic information on natural disasters in august 2019[EB/OL]. (2019-09-04). https://www.mem.gov.cn/xw/bndt/201909/t20190904_336230.shtml.
|
[4] |
何祖谋. 台风“杜苏芮”共造成我省266.69万人受灾[N]. 福建日报, 2023-08-01(002).
He Zumou. Typhoon "Doksuri" caused a total of 2, 666, 900 people in our province affected[N]. Fujian Daily, 2023-08-01(002). (查阅网上资料, 未找到对应的英文翻译, 请确认)
|
[5] |
Bhatia K T, Vecchi G A, Knutson T R, et al. Recent increases in tropical cyclone intensification rates[J]. Nature Communications, 2019, 10(1): 635.
|
[6] |
Mei Wei, Xie Shangping. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753−757. doi: 10.1038/ngeo2792
|
[7] |
Yan Qing, Zhang Zhongshi, Wang Huijun. Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes[J]. Climate Dynamics, 2018, 50(5): 2121−2136.
|
[8] |
Schneider D P, Ammann C M, Otto-Bliesner B L, et al. Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D15): D15101.
|
[9] |
Robock A. Volcanic eruptions and climate[J]. Reviews of Geophysics, 2000, 38(2): 191−219. doi: 10.1029/1998RG000054
|
[10] |
Evan A T. Atlantic hurricane activity following two major volcanic eruptions[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D6): D06101.
|
[11] |
Guevara-Murua A, Hendy E J, Rust A C, et al. Consistent decrease in North Atlantic Tropical Cyclone frequency following major volcanic eruptions in the last three centuries[J]. Geophysical Research Letters, 2015, 42(21): 9425−9432. doi: 10.1002/2015GL066154
|
[12] |
Intergovernmental Panel on Climate Change (IPCC). Climate phenomena and their relevance for future regional climate change[M]//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 1217−1308.
|
[13] |
杨桂山, 施雅风. 西北太平洋热带气旋频数的变化及与海表温度的相关研究[J]. 地理学报, 1999, 54(1): 22−29. doi: 10.3321/j.issn:0375-5444.1999.01.003
Yang Guishan, Shi Yafeng. Changes in the frequencies of tropical cyclones and their relationships to sea surface temperature in the northwestern pacific[J]. Acta Geographica Sinica, 1999, 54(1): 22−29. doi: 10.3321/j.issn:0375-5444.1999.01.003
|
[14] |
李崇银, 穆明权. 厄尔尼诺的发生与赤道西太平洋暖池次表层海温异常[J]. 大气科学, 1999, 23(5): 513−521. doi: 10.3878/j.issn.1006-9895.1999.05.01
Li Chongyin, Mu Mingquan. El Niño occurrence and sub-struface ocean temperature anomalies in the pacific warm pool[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(5): 513−521. doi: 10.3878/j.issn.1006-9895.1999.05.01
|
[15] |
Gray W M. Hurricanes: their formation, structure and likely role in the tropical circulation[M]//Shaw D B. Meteorology Over the Tropical Oceans. Bracknell: Royal Meteorological Society, 1979: 155−218.
|
[16] |
Matsuura T, Yumoto M, Iizuka S. A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific[J]. Climate Dynamics, 2003, 21(2): 105−117. doi: 10.1007/s00382-003-0327-3
|
[17] |
杨亚新. 近70年来西北太平洋热带气旋发生源地和频数的气候特征[J]. 江苏航运职业技术学院学报, 2023, 22(1): 20−24. doi: 10.3969/j.issn.2097-0358.2023.01.005
Yang Yaxin. Climatic characteristics of the source and frequency of tropical cyclones in the Northwest Pacific Ocean over the past 70 years[J]. Journal of Jiangsu Shipping College, 2023, 22(1): 20−24. doi: 10.3969/j.issn.2097-0358.2023.01.005
|
[18] |
炎利军, 黄先香, 于玉斌, 等. 近58年西北太平洋热带气旋频数的气候变化特征[C]//2006年华南地区学术交流会论文集. 广州: 广西气象学会, 2006: 1−3.
Yan Lijun, Huang Xianxiang, Yu Yubin, et al. Climate change characteristics of tropical cyclone frequency in the Northwest Pacific Ocean in recent 58 years[C]//Proceedings of the 2006 South China Academic Exchange Conference. Guangzhou: Guangxi Meteorological Society, 2006: 1−3. (查阅网上资料, 未找到对应的英文翻译, 请确认)
|
[19] |
Gao Chaochao, Robock A, Ammann C. Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23): D23111.
|
[20] |
Stothers R B. The great Tambora eruption in 1815 and its aftermath[J]. Science, 1984, 224(4654): 1191−1198. doi: 10.1126/science.224.4654.1191
|
[21] |
Crowley T J, Unterman M B. Technical details concerning development of a 1200 yr proxy index for global volcanism[J]. Earth System Science Data, 2013, 5(1): 187−197. doi: 10.5194/essd-5-187-2013
|
[22] |
Sato M, Hansen J E, Mccormick M P, et al. Stratospheric aerosol optical depths, 1850–1990[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D12): 22987−22994. doi: 10.1029/93JD02553
|
[23] |
Kennedy B. Underestimated volcanic hazard of Santorini[J]. Nature Geoscience, 2024, 17(4): 278−279.
|
[24] |
Michalsky J J, Stokes G M. Mt. St. Helens’ aerosols: some tropospheric and stratospheric effects[J]. Journal of Applied Meteorology and Climatology, 1983, 22(4): 640−648. doi: 10.1175/1520-0450(1983)022<0640:MSHAST>2.0.CO;2
|
[25] |
Zhu Yunqian, Bardeen C G, Tilmes S, et al. Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption[J]. Communications Earth & Environment, 2022, 3(1): 248.
|
[26] |
Chiacchio M, Pausata F S R, Messori G, et al. On the links between meteorological variables, aerosols, and tropical cyclone frequency in individual ocean basins[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(2): 802−822.
|
[27] |
Evangelista H, Castagna A, Correia A, et al. The 1991 explosive Hudson volcanic eruption as a geochronological marker for the Northern Antarctic Peninsula[J]. Anais da Academia Brasileira de Ciências, 2022, 94(S1): e20210810.
|
[28] |
Knapp K R, Kruk M C, Levinson D H, et al. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data[J]. Bulletin of the American Meteorological Society, 2010, 91(3): 363−376. doi: 10.1175/2009BAMS2755.1
|
[29] |
Knapp K R, Kossin J P. New global tropical cyclone data set from ISCCP B1 geostationary satellite observations[J]. Journal of Applied Remote Sensing, 2007, 1(1): 013505. doi: 10.1117/1.2712816
|
[30] |
Zuo Meng, Man Wenmin, Zhou Tianjun, et al. Different impacts of northern, tropical, and southern volcanic eruptions on the tropical Pacific SST in the last millennium[J]. Journal of Climate, 2018, 31(17): 6729−6744.
|
[31] |
Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407.
|
[32] |
Gray W M. Global view of the origin of tropical disturbances and storms[J]. Monthly Weather Review, 1968, 96(10): 669−700. doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
|
[33] |
Vecchi G A, Soden B J. Effect of remote sea surface temperature change on tropical cyclone potential intensity[J]. Nature, 2007, 450(7172): 1066−1070.
|
[34] |
Zheng Z W. Unusual warming in the coastal region of northern South China Sea and its impact on the sudden intensification of tropical cyclone Tembin (2012)[J]. Advances in Meteorology, 2014, 2014. (查阅网上资料, 未找到本条文献信息, 请确认)
|
[35] |
Vincent E M, Lengaigne M, Menkes C E, et al. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis[J]. Climate Dynamics, 2011, 36(9): 1881−1896.
|
[36] |
Holland G J. The maximum potential intensity of tropical cyclones[J]. Journal of the Atmospheric Sciences, 1997, 54(21): 2519−2541. doi: 10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2
|
[37] |
Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5742): 1844−1846. doi: 10.1126/science.1116448
|
[38] |
Oman L, Robock A, Stenchikov G, et al. Climatic response to high‐latitude volcanic eruptions[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D13): D13103.
|
[39] |
Wu Zhiyuan, Jiang Changbo, Conde M, et al. The long-term spatiotemporal variability of sea surface temperature in the northwest Pacific and China offshore[J]. Ocean Science, 2020, 16(1): 83−97. doi: 10.5194/os-16-83-2020
|
[40] |
Hegerl G C, Crowley T J, Baum S K, et al. Detection of volcanic, solar and greenhouse gas signals in paleo‐reconstructions of Northern Hemispheric temperature[J]. Geophysical Research Letters, 2003, 30(5): 1242.
|
[41] |
Robock A, Taylor K E, Stenchikov G L, et al. GCM evaluation of a mechanism for El Niño triggering by the El Chichón ash cloud[J]. Geophysical Research Letters, 1995, 22(17): 2369−2372. doi: 10.1029/95GL02065
|
[42] |
Handler P. Possible association of stratospheric aerosols and El Nino type events[J]. Geophysical Research Letters, 1984, 11(11): 1121−1124. doi: 10.1029/GL011i011p01121
|
[43] |
Stevenson S, Fasullo J T, Otto-Bliesner B L, et al. Role of eruption season in reconciling model and proxy responses to tropical volcanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8): 1822−1826.
|
[44] |
Quinn W H, Neal V T, Antunez De Mayolo S E. El Niño occurrences over the past four and a half centuries[J]. Journal of Geophysical Research: Oceans, 1987, 92(C13): 14449−14461.
|
[45] |
Guo Yipeng, Tan Zhemin. Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño[J]. Nature Communications, 2018, 9(1): 1507. doi: 10.1038/s41467-018-03945-y
|
[46] |
Guo Yipeng, Tan Zhemin. Influence of different ENSO types on tropical cyclone rapid intensification over the western North Pacific[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(11): e2020JD033059. doi: 10.1029/2020JD033059
|
[47] |
Gergis J L, Fowler A M. A history of ENSO events since A. D. 1525: implications for future climate change[J]. Climatic Change, 2009, 92(3/4): 343−387.
|
[48] |
Emile-Geay J, Seager R, Cane M A, et al. Volcanoes and ENSO over the past millennium[J]. Journal of Climate, 2008, 21(13): 3134−3148.
|
[49] |
Camargo S J, Polvani L M. Little evidence of reduced global tropical cyclone activity following recent volcanic eruptions[J]. npj Climate and Atmospheric Science, 2019, 2(1): 14. doi: 10.1038/s41612-019-0070-z
|
[50] |
Pausata F S R, Camargo S J. Tropical cyclone activity affected by volcanically induced ITCZ shifts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(16): 7732−7737.
|