Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Sun Honggen,Han Yansong,Jiang Wei, et al. Impacts of major volcanic activities on the frequency of Northwest Pacific tropical cyclones from 1900 to 2022[J]. Haiyang Xuebao,2024, 46(11):1–12 doi: 10.12284/hyxb2024130
Citation: Sun Honggen,Han Yansong,Jiang Wei, et al. Impacts of major volcanic activities on the frequency of Northwest Pacific tropical cyclones from 1900 to 2022[J]. Haiyang Xuebao,2024, 46(11):1–12 doi: 10.12284/hyxb2024130

Impacts of major volcanic activities on the frequency of Northwest Pacific tropical cyclones from 1900 to 2022

doi: 10.12284/hyxb2024130
  • Received Date: 2024-06-19
  • Rev Recd Date: 2024-11-04
  • Available Online: 2024-11-22
  • The stratospheric sulfate aerosol layer formed after large volcanic eruptions can inhibit the formation and development of tropical cyclones, but relevant studies mainly focus on the Atlantic Ocean, and few involve other sea areas. The Northwest Pacific Ocean is the area where most tropical cyclones are generated. Exploring the climate influencing factors is helpful for us to deeply understand the generation and development mechanism of tropical cyclones. Based on the data of tropical cyclones in the Northwest Pacific Ocean recorded in the International Optimum Orbit Database and the China Meteorological Administration database, the changes of sea surface temperature and the number of tropical cyclones in the Northwest Pacific Ocean before and after major volcanic eruptions during 1900—2023 are compared, and the effects of major volcanic eruptions on tropical cyclones in the Northwest Pacific Ocean are discussed. By comparing the number of tropical cyclones two years before the eruption and two years after the eruption, we found that the number of tropical cyclones in the Northwest Pacific decreased significantly after a major eruption. The sea surface temperature significantly responds to low-latitude volcanic eruptions, but does not significantly respond to high-latitude volcanic eruptions. Our study shows that the increase of aerosol forcing after large volcanic eruptions is closely related to the frequency of tropical cyclones, but the decrease of sea surface temperature caused by it may not be the direct cause of the decrease of tropical cyclones, and its mechanism may be related to the migration of the intertropical convergence zone caused by aerosol forcing, which still needs further investigation.
  • loading
  • [1]
    端义宏, 余晖, 伍荣生. 热带气旋强度变化研究进展[J]. 气象学报, 2005, 63(5): 636−645. doi: 10.3321/j.issn:0577-6619.2005.05.009

    Duan Yihong, Yu Hui, Wu Rongsheng. Review of the research in the intensity change of tropical cyclone[J]. Acta Meteorologica Sinica, 2005, 63(5): 636−645. doi: 10.3321/j.issn:0577-6619.2005.05.009
    [2]
    赵鹏国, 银燕, 肖辉, 等. 气溶胶对热带气旋强度及电过程影响的数值模拟研究[J]. 气象科学, 2016, 36(1): 1−9. doi: 10.3969/2015jms.0012

    Zhao Pengguo, Yin Yan, Xiao Hui, et al. Numerical simulation of the effects of aerosol on the intensity and electrification of tropical cyclone[J]. Journal of the Meteorological Sciences, 2016, 36(1): 1−9. doi: 10.3969/2015jms.0012
    [3]
    中华人民共和国应急管理部. 应急管理部发布2019年8月全国自然灾害基本情况[EB/OL]. (2019-09-04). https://www.mem.gov.cn/xw/bndt/201909/t20190904_336230.shtml. (查阅网上资料,未找到引用日期信息,请确认)

    Ministry of Emergency Management of the People’s Republic of China. Basic information on natural disasters in august 2019[EB/OL]. (2019-09-04). https://www.mem.gov.cn/xw/bndt/201909/t20190904_336230.shtml.
    [4]
    何祖谋. 台风“杜苏芮”共造成我省266.69万人受灾[N]. 福建日报, 2023-08-01(002).

    He Zumou. Typhoon "Doksuri" caused a total of 2, 666, 900 people in our province affected[N]. Fujian Daily, 2023-08-01(002). (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [5]
    Bhatia K T, Vecchi G A, Knutson T R, et al. Recent increases in tropical cyclone intensification rates[J]. Nature Communications, 2019, 10(1): 635.
    [6]
    Mei Wei, Xie Shangping. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753−757. doi: 10.1038/ngeo2792
    [7]
    Yan Qing, Zhang Zhongshi, Wang Huijun. Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes[J]. Climate Dynamics, 2018, 50(5): 2121−2136.
    [8]
    Schneider D P, Ammann C M, Otto-Bliesner B L, et al. Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D15): D15101.
    [9]
    Robock A. Volcanic eruptions and climate[J]. Reviews of Geophysics, 2000, 38(2): 191−219. doi: 10.1029/1998RG000054
    [10]
    Evan A T. Atlantic hurricane activity following two major volcanic eruptions[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D6): D06101.
    [11]
    Guevara-Murua A, Hendy E J, Rust A C, et al. Consistent decrease in North Atlantic Tropical Cyclone frequency following major volcanic eruptions in the last three centuries[J]. Geophysical Research Letters, 2015, 42(21): 9425−9432. doi: 10.1002/2015GL066154
    [12]
    Intergovernmental Panel on Climate Change (IPCC). Climate phenomena and their relevance for future regional climate change[M]//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 1217−1308.
    [13]
    杨桂山, 施雅风. 西北太平洋热带气旋频数的变化及与海表温度的相关研究[J]. 地理学报, 1999, 54(1): 22−29. doi: 10.3321/j.issn:0375-5444.1999.01.003

    Yang Guishan, Shi Yafeng. Changes in the frequencies of tropical cyclones and their relationships to sea surface temperature in the northwestern pacific[J]. Acta Geographica Sinica, 1999, 54(1): 22−29. doi: 10.3321/j.issn:0375-5444.1999.01.003
    [14]
    李崇银, 穆明权. 厄尔尼诺的发生与赤道西太平洋暖池次表层海温异常[J]. 大气科学, 1999, 23(5): 513−521. doi: 10.3878/j.issn.1006-9895.1999.05.01

    Li Chongyin, Mu Mingquan. El Niño occurrence and sub-struface ocean temperature anomalies in the pacific warm pool[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(5): 513−521. doi: 10.3878/j.issn.1006-9895.1999.05.01
    [15]
    Gray W M. Hurricanes: their formation, structure and likely role in the tropical circulation[M]//Shaw D B. Meteorology Over the Tropical Oceans. Bracknell: Royal Meteorological Society, 1979: 155−218.
    [16]
    Matsuura T, Yumoto M, Iizuka S. A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific[J]. Climate Dynamics, 2003, 21(2): 105−117. doi: 10.1007/s00382-003-0327-3
    [17]
    杨亚新. 近70年来西北太平洋热带气旋发生源地和频数的气候特征[J]. 江苏航运职业技术学院学报, 2023, 22(1): 20−24. doi: 10.3969/j.issn.2097-0358.2023.01.005

    Yang Yaxin. Climatic characteristics of the source and frequency of tropical cyclones in the Northwest Pacific Ocean over the past 70 years[J]. Journal of Jiangsu Shipping College, 2023, 22(1): 20−24. doi: 10.3969/j.issn.2097-0358.2023.01.005
    [18]
    炎利军, 黄先香, 于玉斌, 等. 近58年西北太平洋热带气旋频数的气候变化特征[C]//2006年华南地区学术交流会论文集. 广州: 广西气象学会, 2006: 1−3.

    Yan Lijun, Huang Xianxiang, Yu Yubin, et al. Climate change characteristics of tropical cyclone frequency in the Northwest Pacific Ocean in recent 58 years[C]//Proceedings of the 2006 South China Academic Exchange Conference. Guangzhou: Guangxi Meteorological Society, 2006: 1−3. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [19]
    Gao Chaochao, Robock A, Ammann C. Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23): D23111.
    [20]
    Stothers R B. The great Tambora eruption in 1815 and its aftermath[J]. Science, 1984, 224(4654): 1191−1198. doi: 10.1126/science.224.4654.1191
    [21]
    Crowley T J, Unterman M B. Technical details concerning development of a 1200 yr proxy index for global volcanism[J]. Earth System Science Data, 2013, 5(1): 187−197. doi: 10.5194/essd-5-187-2013
    [22]
    Sato M, Hansen J E, Mccormick M P, et al. Stratospheric aerosol optical depths, 1850–1990[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D12): 22987−22994. doi: 10.1029/93JD02553
    [23]
    Kennedy B. Underestimated volcanic hazard of Santorini[J]. Nature Geoscience, 2024, 17(4): 278−279.
    [24]
    Michalsky J J, Stokes G M. Mt. St. Helens’ aerosols: some tropospheric and stratospheric effects[J]. Journal of Applied Meteorology and Climatology, 1983, 22(4): 640−648. doi: 10.1175/1520-0450(1983)022<0640:MSHAST>2.0.CO;2
    [25]
    Zhu Yunqian, Bardeen C G, Tilmes S, et al. Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption[J]. Communications Earth & Environment, 2022, 3(1): 248.
    [26]
    Chiacchio M, Pausata F S R, Messori G, et al. On the links between meteorological variables, aerosols, and tropical cyclone frequency in individual ocean basins[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(2): 802−822.
    [27]
    Evangelista H, Castagna A, Correia A, et al. The 1991 explosive Hudson volcanic eruption as a geochronological marker for the Northern Antarctic Peninsula[J]. Anais da Academia Brasileira de Ciências, 2022, 94(S1): e20210810.
    [28]
    Knapp K R, Kruk M C, Levinson D H, et al. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data[J]. Bulletin of the American Meteorological Society, 2010, 91(3): 363−376. doi: 10.1175/2009BAMS2755.1
    [29]
    Knapp K R, Kossin J P. New global tropical cyclone data set from ISCCP B1 geostationary satellite observations[J]. Journal of Applied Remote Sensing, 2007, 1(1): 013505. doi: 10.1117/1.2712816
    [30]
    Zuo Meng, Man Wenmin, Zhou Tianjun, et al. Different impacts of northern, tropical, and southern volcanic eruptions on the tropical Pacific SST in the last millennium[J]. Journal of Climate, 2018, 31(17): 6729−6744.
    [31]
    Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407.
    [32]
    Gray W M. Global view of the origin of tropical disturbances and storms[J]. Monthly Weather Review, 1968, 96(10): 669−700. doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
    [33]
    Vecchi G A, Soden B J. Effect of remote sea surface temperature change on tropical cyclone potential intensity[J]. Nature, 2007, 450(7172): 1066−1070.
    [34]
    Zheng Z W. Unusual warming in the coastal region of northern South China Sea and its impact on the sudden intensification of tropical cyclone Tembin (2012)[J]. Advances in Meteorology, 2014, 2014. (查阅网上资料, 未找到本条文献信息, 请确认)
    [35]
    Vincent E M, Lengaigne M, Menkes C E, et al. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis[J]. Climate Dynamics, 2011, 36(9): 1881−1896.
    [36]
    Holland G J. The maximum potential intensity of tropical cyclones[J]. Journal of the Atmospheric Sciences, 1997, 54(21): 2519−2541. doi: 10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2
    [37]
    Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5742): 1844−1846. doi: 10.1126/science.1116448
    [38]
    Oman L, Robock A, Stenchikov G, et al. Climatic response to high‐latitude volcanic eruptions[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D13): D13103.
    [39]
    Wu Zhiyuan, Jiang Changbo, Conde M, et al. The long-term spatiotemporal variability of sea surface temperature in the northwest Pacific and China offshore[J]. Ocean Science, 2020, 16(1): 83−97. doi: 10.5194/os-16-83-2020
    [40]
    Hegerl G C, Crowley T J, Baum S K, et al. Detection of volcanic, solar and greenhouse gas signals in paleo‐reconstructions of Northern Hemispheric temperature[J]. Geophysical Research Letters, 2003, 30(5): 1242.
    [41]
    Robock A, Taylor K E, Stenchikov G L, et al. GCM evaluation of a mechanism for El Niño triggering by the El Chichón ash cloud[J]. Geophysical Research Letters, 1995, 22(17): 2369−2372. doi: 10.1029/95GL02065
    [42]
    Handler P. Possible association of stratospheric aerosols and El Nino type events[J]. Geophysical Research Letters, 1984, 11(11): 1121−1124. doi: 10.1029/GL011i011p01121
    [43]
    Stevenson S, Fasullo J T, Otto-Bliesner B L, et al. Role of eruption season in reconciling model and proxy responses to tropical volcanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8): 1822−1826.
    [44]
    Quinn W H, Neal V T, Antunez De Mayolo S E. El Niño occurrences over the past four and a half centuries[J]. Journal of Geophysical Research: Oceans, 1987, 92(C13): 14449−14461.
    [45]
    Guo Yipeng, Tan Zhemin. Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño[J]. Nature Communications, 2018, 9(1): 1507. doi: 10.1038/s41467-018-03945-y
    [46]
    Guo Yipeng, Tan Zhemin. Influence of different ENSO types on tropical cyclone rapid intensification over the western North Pacific[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(11): e2020JD033059. doi: 10.1029/2020JD033059
    [47]
    Gergis J L, Fowler A M. A history of ENSO events since A. D. 1525: implications for future climate change[J]. Climatic Change, 2009, 92(3/4): 343−387.
    [48]
    Emile-Geay J, Seager R, Cane M A, et al. Volcanoes and ENSO over the past millennium[J]. Journal of Climate, 2008, 21(13): 3134−3148.
    [49]
    Camargo S J, Polvani L M. Little evidence of reduced global tropical cyclone activity following recent volcanic eruptions[J]. npj Climate and Atmospheric Science, 2019, 2(1): 14. doi: 10.1038/s41612-019-0070-z
    [50]
    Pausata F S R, Camargo S J. Tropical cyclone activity affected by volcanically induced ITCZ shifts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(16): 7732−7737.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (80) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return