Citation: | Yang Chao,Zhu Longhai,Zhang Xiaodong. Four-decade coastal evolution of Jiehe Beach in northeastern Laizhou Bay: an analysis using extensive satellite imagery[J]. Haiyang Xuebao,2024, 46(12):1–13 doi: 10.12284/hyxb2024125 |
[1] |
Turner I L, Harley M D, Almar R, et al. Satellite optical imagery in coastal engineering[J]. Coastal Engineering, 2021, 167: 103919. doi: 10.1016/j.coastaleng.2021.103919
|
[2] |
Vitousek S, Vos K, Splinter K D, et al. A model integrating satellite-derived shoreline observations for predicting fine-scale shoreline response to waves and sea-level rise across large coastal regions[J]. Journal of Geophysical Research: Earth Surface, 2023, 128(7): e2022JF006936.
|
[3] |
Zhang Xiaodong, Wu Chuang, Hu Rijun, et al. Can satellite-derived beach images resolve the responses to human activities?[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(2): e2023JF007339. doi: 10.1029/2023JF007339
|
[4] |
Luijendijk A, Hagenaars G, Ranasinghe R, et al. The state of the world’s beaches[J]. Scientific Reports, 2018, 8(1): 6641. doi: 10.1038/s41598-018-24630-6
|
[5] |
Murray N J, Phinn S R, Dewitt M, et al. The global distribution and trajectory of tidal flats[J]. Nature, 2019, 565(7738): 222−225.
|
[6] |
Vousdoukas M I, Ranasinghe R, Mentaschi L, et al. Sandy coastlines under threat of erosion[J]. Nature Climate Change, 2020, 10(3): 260−263. doi: 10.1038/s41558-020-0697-0
|
[7] |
Cai Feng, Cao Chao, Qi Hongshuai, et al. Rapid migration of mainland China's coastal erosion vulnerability due to anthropogenic changes[J]. Journal of Environmental Management, 2022, 319: 115632. doi: 10.1016/j.jenvman.2022.115632
|
[8] |
Moussaid J, Fora A A, Zourarah B, et al. Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco[J]. Ocean Engineering, 2015, 102: 71−77. doi: 10.1016/j.oceaneng.2015.04.044
|
[9] |
Valderrama-Landeros L, Flores-De-Santiago F. Assessing coastal erosion and accretion trends along two contrasting subtropical rivers based on remote sensing data[J]. Ocean & Coastal Management, 2019, 169: 58−67.
|
[10] |
Zhang Xiaodong, Tan Xiawei, Hu Rijun, et al. Using a transect-focused approach to interpret satellite images and analyze shoreline evolution in Haiyang Beach, China[J]. Marine Geology, 2021, 438: 106526. doi: 10.1016/j.margeo.2021.106526
|
[11] |
Zhang Xiaodong, Wu Chuang, Zhang Yongchang, et al. Using free satellite imagery to study the long-term evolution of intertidal bar systems[J]. Coastal Engineering, 2022, 174: 104123. doi: 10.1016/j.coastaleng.2022.104123
|
[12] |
Cai Feng, Su Xianze, Liu Jianhui, et al. Coastal erosion in China under the condition of global climate change and measures for its prevention[J]. Progress in Natural Science, 2009, 19(4): 415−426.
|
[13] |
Rangel-Buitrago N, Williams A T, Anfuso G. Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls[J]. Ocean & Coastal Management, 2018, 156: 58−75.
|
[14] |
Tak W J, Jun K W, Kim S D, et al. Using drone and LiDAR to assess coastal erosion and shoreline change due to the construction of coastal structures[J]. Journal of Coastal Research, 2020, 95(sp1): 674−678. doi: 10.2112/SI95-131.1
|
[15] |
Sujivakand J, Samarasekara R S M, Siriwardana H P A M, et al. Unmanned aerial vehicles (UAVs) for coastal protection assessment: a study of detached breakwater and groins at Marawila Beach, Sri Lanka[J]. Regional Studies in Marine Science, 2024, 69: 103282.
|
[16] |
黎奕宏. 我国三类典型海岸工程对相邻海滩的影响研究[D]. 厦门: 国家海洋局第三海洋研究所, 2018.
Li Yihong. Study on the influence of three types of typical coastal structures to the adjacent beach in China[D]. Xiamen: Third Institute of Oceanography, Ministry of Natural Resources, 2018.
|
[17] |
何岩雨, 朱君, 戚洪帅, 等. 人工岛影响下的海滩修复对策研究——以海口西海岸为例[J]. 应用海洋学学报, 2021, 40(1): 2−11.
He Yanyu, Zhu Jun, Qi Hongshuai, et al. Beach restoration strategy influenced by artificial island: a case study on the west coast of Haikou[J]. Journal of Applied Oceanography, 2021, 40(1): 2−11.
|
[18] |
张达恒, 时连强, 龚照辉, 等. 冬季波浪与人工岛联合作用下日月湾海滩冲淤演变特征[J]. 热带海洋学报, 2022, 41(4): 71−81. doi: 10.11978/2021150
Zhang Daheng, Shi Lianqiang, Gong Zhaohui, et al. Evolution characteristics of beach erosion and accretion at the Riyue Bay under the combined impacts of winter waves and artificial island[J]. Journal of Tropical Oceanography, 2022, 41(4): 71−81. doi: 10.11978/2021150
|
[19] |
戚洪帅, 冯威, 刘根, 等. 人工岛影响下养护海滩演变特征研究——以海口湾为例[J]. 海洋学报, 2024, 46(2): 79−92.
Qi Hongshuai, Feng Wei, Liu Gen, et al. Study on the evolution of nourished beaches under the influence of artificial islands: taking Haikou Bay as an example[J]. Haiyang Xuebao, 2024, 46(2): 79−92.
|
[20] |
Liu Gen, Qi Hongshuai, Cai Feng, et al. Initial morphological responses of coastal beaches to a mega offshore artificial island[J]. Earth Surface Processes and Landforms, 2022, 47(6): 1355−1370. doi: 10.1002/esp.5320
|
[21] |
Hu Rijun, Fan Yingjie, Zhang Xiaodong. Satellite-derived shoreline changes of an urban beach and their relationship to coastal engineering[J]. Remote Sensing, 2024, 16(13): 2469. doi: 10.3390/rs16132469
|
[22] |
Li Songzhe, Lv Biao, Yang Yunping, et al. Effects of offshore artificial islands on beach stability of sandy shores: case study of Hongtang Bay, Hainan Province[J]. Frontiers of Earth Science, 2022, 16(4): 876−889.
|
[23] |
Qu Kaicheng, Chen Kefeng, Wang Nairui, et al. Geomorphological processes following the construction of an offshore artificial island in the radial sand ridges of the South Yellow Sea[J]. Coastal Engineering, 2024, 192: 104545. doi: 10.1016/j.coastaleng.2024.104545
|
[24] |
Pradeep J, Shaji E, Chandran C S S, et al. Assessment of coastal variations due to climate change using remote sensing and machine learning techniques: a case study from west coast of India[J]. Estuarine, Coastal and Shelf Science, 2022, 275: 107968. doi: 10.1016/j.ecss.2022.107968
|
[25] |
Fogarin S, Zanetti M, Dal Barco M K, et al. Combining remote sensing analysis with machine learning to evaluate short-term coastal evolution trend in the shoreline of Venice[J]. Science of the Total Environment, 2023, 859: 160293. doi: 10.1016/j.scitotenv.2022.160293
|
[26] |
Mbezi J, Mango J, Lubida A, et al. Exploring shoreline changes and their implications in coastal communities using GIS and remote sensing techniques: the case of eastern beaches of Unguja island, Tanzania[J]. Regional Studies in Marine Science, 2024, 75: 103566. doi: 10.1016/j.rsma.2024.103566
|
[27] |
Palanisamy P, Sivakumar V, Velusamy P, et al. Spatio-temporal analysis of shoreline changes and future forecast using remote sensing, GIS and kalman filter model: a case study of Rio de Janeiro, Brazil[J]. Journal of South American Earth Sciences, 2024, 133: 104701. doi: 10.1016/j.jsames.2023.104701
|
[28] |
Hagenaars G, De Vries S, Luijendijk A P, et al. On the accuracy of automated shoreline detection derived from satellite imagery: a case study of the sand motor mega-scale nourishment[J]. Coastal Engineering, 2018, 133: 113−125. doi: 10.1016/j.coastaleng.2017.12.011
|
[29] |
Pardo-Pascual J E, Almonacid-Caballer J, Ruiz L A, et al. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision[J]. Remote Sensing of Environment, 2012, 123: 1−11. doi: 10.1016/j.rse.2012.02.024
|
[30] |
Pardo-Pascual J E, Sánchez-García E, Almonacid-Caballer J, et al. Assessing the accuracy of automatically extracted shorelines on microtidal beaches from Landsat 7, Landsat 8 and Sentinel-2 imagery[J]. Remote Sensing, 2018, 10(2): 326.
|
[31] |
Vos K, Harley M D, Splinter K D, et al. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery[J]. Coastal Engineering, 2019, 150: 160−174. doi: 10.1016/j.coastaleng.2019.04.004
|
[32] |
Zhang Xiaodong. Computer-aided shoreline position recognition software[J]. Figshare, 2023. (查阅网上资料, 未找到本条文献卷期页码, 请确认)
|
[33] |
吴闯, 张晓东, 许淑梅, 等. 山东青岛灵山湾南部海滩的时空演变及其影响因素[J]. 古地理学报, 2022, 24(1): 152−163. doi: 10.7605/gdlxb.2022.01.012
Wu Chuang, Zhang Xiaodong, Xu Shumei, et al. Spatial and temporal evolution of Lingnan Beach in Qingdao of Shandong Province and its influencing factors[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(1): 152−163. doi: 10.7605/gdlxb.2022.01.012
|
[34] |
张晓东, 姚雨涵, 朱龙海, 等. 基于大量卫星图像研究青岛汇泉湾海滩近40年的地形地貌演变[J]. 海洋与湖沼, 2022, 53(3): 578−589. doi: 10.11693/hyhz20211100286
Zhang Xiaodong, Yao Yuhan, Zhu Longhai, et al. Topographic and geomorphological evolution of Huiquan Beach of Qingdao in past 40 years using massive satellite images[J]. Oceanologia et Limnologia Sinica, 2022, 53(3): 578−589. doi: 10.11693/hyhz20211100286
|
[35] |
董卫卫. 莱州湾东岸冲淤演变分析与防护[D]. 青岛: 中国海洋大学, 2008.
Dong Weiwei. The erosion and deposition evolution development and the protection in the east coast of Laizhou[D]. Qingdao: Ocean University of China, 2008.
|
[36] |
周广镇. 莱州湾东岸近岸海域规划用海实施后冲淤演变预测[D]. 青岛: 中国海洋大学, 2012.
Zhou Guangzhen. Evolution prediction of erosion and deposition in the east coast of Laizhou Bay after the implementation of the coastal planning[D]. Qingdao: Ocean University of China, 2012.
|
[37] |
伊善堂, 尹东晓, 朱龙海, 等. 招远砂质海岸岸滩演化特征[J]. 海洋地质前沿, 2017, 33(9): 47−52.
Yi Shantang, Yin Dongxiao, Zhu Longhai, et al. Evolutionary features of the Zhaoyuan sandy beach[J]. Marine Geology Frontiers, 2017, 33(9): 47−52.
|
[38] |
庄振业, 陈卫民, 许卫东, 等. 山东半岛若干平直砂岸近期强烈蚀退及其后果[J]. 青岛海洋大学学报, 1989, 19(1): 90−98.
Zhuang Zhenye, Chen Weimin, Xu Weidong, et al. Retrogression of straight sandy beaches in the Shandong peninsula and its results[J]. Journal of Ocean University of Qingdao, 1989, 19(1): 90−98.
|
[39] |
王庆, 杨华, 仲少云, 等. 山东莱州浅滩的沉积动态与地貌演变[J]. 地理学报, 2003, 58(5): 749−756. doi: 10.3321/j.issn:0375-5444.2003.05.014
Wang Qing, Yang Hua, Zhong Shaoyun, et al. Sedimentary dynamics and geomorphic evolution of the Laizhou shoal[J]. Acta Geographica Sinica, 2003, 58(5): 749−756. doi: 10.3321/j.issn:0375-5444.2003.05.014
|
[40] |
常瑞芳, 庄振业, 吴建政. 山东半岛西北海岸的蚀退与防护[J]. 青岛海洋大学学报, 1993, 23(3): 60−68.
Chang Ruifang, Zhuang Zhenye, Wu Jianzheng. Retrogression and protection of the north-west coast of the Shandong peninsula[J]. Journal of Ocean University of Qingdao, 1993, 23(3): 60−68.
|
[41] |
中国海湾志编纂委员会. 中国海湾志(第三分册): 山东半岛北部和东部海湾[M]. 北京: 海洋出版社, 1991.
Editorial Board of China Bay Survey. Survey of China Bays(Vol. 3): Northern and Eastern Gulf of Shandong Peninsula[M]. Beijing: China Ocean Press, 1991.
|
[42] |
安永宁, 吴建政, 朱龙海, 等. 龙口湾冲淤特性对人工岛群建设的响应[J]. 海洋地质动态, 2010, 26(10): 24−30.
An Yongning, Wu Jianzheng, Zhu Longhai, et al. Response of erosion-deposition pattern to artificial islands construction in Longkou Bay[J]. Marine Geology Letters, 2010, 26(10): 24−30.
|
[43] |
任鹏, 孙志高, 王传远, 等. 人工岛建设对龙口湾表层沉积物粒度及黏土矿物组成特征的影响[J]. 海洋科学进展, 2016, 34(4): 578−587. doi: 10.3969/j.issn.1671-6647.2016.04.014
Ren Peng, Sun Zhigao, Wang Chuanyuan, et al. Impacts of construction of artificial islands on the flow-sediment regulation scheme on grain and clay compositions in the Longkou Bay[J]. Advances in Marine Science, 2016, 34(4): 578−587. doi: 10.3969/j.issn.1671-6647.2016.04.014
|
[44] |
刘波, 胡日军, 李毅, 等. 夏季潮流作用下龙口湾海域悬浮泥沙时空变化特征及其输运机制[J]. 海洋地质前沿, 2020, 36(3): 20−30.
Liu Bo, Hu Rijun, Li Yi, et al. Spatio-temporal variation characteristics and transport mechanism of suspended sediments in Longkou Bay under the influence of summer tidal current[J]. Marine Geology Frontiers, 2020, 36(3): 20−30.
|
[45] |
费成鹏, 胡日军, 雒敏义, 等. 龙口湾水动力特征及其对人工岛群建设的响应[J]. 海洋地质与第四纪地质, 2022, 42(1): 81−95.
Fei Chengpeng, Hu Rijun, Luo Minyi, et al. Hydrodynamic characteristics of Longkou Bay and its response to artificial island groups[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 81−95.
|
[46] |
王超, 姜胜辉, 王世臣, 等. 山东裕龙岛跨河道工程对沉积动力环境影响研究[J]. 海洋地质与第四纪地质, 2024, 44(1): 191−202.
Wang Chao, Jiang Shenghui, Wang Shichen, et al. Study on the impact of cross-river engineering on sedimentary dynamic environment in Yulong Island, Shandong[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 191−202.
|
[47] |
Boak E H, Turner I L. Shoreline definition and detection: a review[J]. Journal of Coastal Research, 2005, 21(4): 688−703.
|
[48] |
Matsumoto K, Takanezawa T, Ooe M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan[J]. Journal of oceanography, 2000, 56(5): 567−581.
|