Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Sun Beibei,Ren Jianhua,Zhang Jiawei, et al. Manganese, iron and sulfur diagenesis and diffusive fluxes of porewater iron and manganese in sediments of Laizhou Bay, Bohai Sea[J]. Haiyang Xuebao,2024, 46(9):14–26 doi: 10.12284/hyxb2024116
Citation: Sun Beibei,Ren Jianhua,Zhang Jiawei, et al. Manganese, iron and sulfur diagenesis and diffusive fluxes of porewater iron and manganese in sediments of Laizhou Bay, Bohai Sea[J]. Haiyang Xuebao,2024, 46(9):14–26 doi: 10.12284/hyxb2024116

Manganese, iron and sulfur diagenesis and diffusive fluxes of porewater iron and manganese in sediments of Laizhou Bay, Bohai Sea

doi: 10.12284/hyxb2024116
  • Received Date: 2024-04-20
  • Rev Recd Date: 2024-06-11
  • Available Online: 2024-08-19
  • Publish Date: 2024-09-01
  • Based on analyses of solid-phase and porewater chemistry of sediment cores at four sites collected from Laizhou Bay of the Bohai Sea, we revealed diagenetic cycles of iron, manganese and sulfur and their responses to terrestrial inputs and anthropogenic perturbations. Results suggest that water eutrophication of the bay has not given rise to organic carbon (OC) enrichment in the sediments. Actually, contents and lability of sediment OC are generally low, largely due to the inputs of terrestrial refractory OC and intense sediment resuspension induced by natural processes and anthropogenic perturbations in the river-dominated area. This feature greatly dampens sulfate reduction, resulting in low accumulation of total reduced inorganic sulfide (0.28−88 μmol/g). Porewater Mn2+ is mainly from reductive dissolution of amorphous and poorly crystalline Mn oxides, while precipitation of MnCO3 is mainly responsible for Mn2+ consumption in sediment below 10 cm depth. Intense sediment resuspension and refractory nature of sediment OC encourage dissimilatory iron reduction, with relative contribution of this pathway to total anaerobic OC mineralization of about 51%, on average. At the site (S6) heavily influenced by the Huanghe River input, dynamic depositional regime facilitates reductive dissolution of manganese oxides, but dampens reduction of iron oxides and sulfate to some extent. Upward diffusive fluxes of porewater Mn2+ and Fe2+ in the sediments are at the lower end for sediments of other areas dominated by major river inputs, which is attributable to overall low lability of sediment OC.
  • loading
  • [1]
    Konhauser K. Introduction to Geomicrobiology[M]. Malden: Blackwell Publishing, 2007.
    [2]
    Burdige D J. Geochemistry of Marine Sediments[M]. Princeton: Princeton University Press, 2006.
    [3]
    Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1): 1−220. doi: 10.7185/geochempersp.1.1
    [4]
    Estes E R, Andeer P F, Nordlund D, et al. Biogenic manganese oxides as reservoirs of organic carbon and proteins in terrestrial and marine environments[J]. Geobiology, 2017, 15(1): 158−172. doi: 10.1111/gbi.12195
    [5]
    Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198−200. doi: 10.1038/nature10855
    [6]
    Wang D, Zhu M X, Yang G P, et al. Reactive iron and iron-bound organic carbon in surface sediments of the river-dominated Bohai Sea (China) Versus the Southern Yellow Sea[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(1): 79−98. doi: 10.1029/2018JG004722
    [7]
    Canfield D E, Thamdrup B, Hansen J W. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3867−3883. doi: 10.1016/0016-7037(93)90340-3
    [8]
    Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[M]//Schink B. Advances in Microbial Ecology. Boston: Springer, 2000: 41-84.
    [9]
    Berner R A. Sulphate reduction, organic matter decomposition and pyrite formation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1985, 315(1531): 25−38.
    [10]
    Reithmaier G M S, Johnston S G, Junginger T, et al. Alkalinity production coupled to pyrite formation represents an unaccounted blue carbon sink[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006785. doi: 10.1029/2020GB006785
    [11]
    Burdige D J. Estuarine and coastal sediments—Coupled Biogeochemical Cycling[J]. Treatise on estuarine and coastal science, 2011, 5: 279−316.
    [12]
    Kraal P, Burton E D, Rose A L, et al. Decoupling between water column oxygenation and benthic phosphate dynamics in a shallow eutrophic estuary[J]. Environmental Science & Technology, 2013, 47(7): 3114−3121.
    [13]
    Middelburg J J, Levin L A. Coastal hypoxia and sediment biogeochemistry[J]. Biogeosciences, 2009, 6(7): 1273−1293. doi: 10.5194/bg-6-1273-2009
    [14]
    Aller R C. Conceptual models of early diagenetic processes: the muddy seafloor as an unsteady, batch reactor[J]. Journal of Marine Research, 2004, 62(6): 815−835. doi: 10.1357/0022240042880837
    [15]
    van de Velde S, Van Lancker V, Hidalgo-Martinez S, et al. Anthropogenic disturbance keeps the coastal seafloor biogeochemistry in a transient state[J]. Scientific Reports, 2018, 8(1): 5582. doi: 10.1038/s41598-018-23925-y
    [16]
    Wei Y Q, Cui H W, Hu Q J, et al. Eutrophication status assessment in the Laizhou Bay, Bohai Sea: further evidence for the ecosystem degradation[J]. Marine Pollution Bulletin, 2022, 181: 113867. doi: 10.1016/j.marpolbul.2022.113867
    [17]
    Zhang F F, Fu H R, Lou H W, et al. Assessment of eutrophication from Xiaoqing River estuary to Laizhou Bay: further warning of ecosystem degradation in typically polluted estuary[J]. Marine Pollution Bulletin, 2023, 193: 115209. doi: 10.1016/j.marpolbul.2023.115209
    [18]
    Shen C C, Zheng W, Shi H H, et al. Assessment and regulation of ocean health based on ecosystem services: case study in the Laizhou Bay, China[J]. Acta Oceanologica Sinica, 2015, 34(12): 61−66. doi: 10.1007/s13131-015-0777-6
    [19]
    Zhuang W, Gao X L. Distributions, sources and ecological risk assessment of arsenic and mercury in the surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea[J]. Marine Pollution Bulletin, 2015, 99(1-2): 320−327. doi: 10.1016/j.marpolbul.2015.07.037
    [20]
    Xing L M, Liu H F, Bolster D. Statistical-physical method for simulating the transport of microplastic-antibiotic compound pollutants in typical bay area[J]. Environmental Pollution, 2024, 344: 123339. doi: 10.1016/j.envpol.2024.123339
    [21]
    Gao X L, Li P M, Chen C T A. Assessment of sediment quality in two important areas of mariculture in the Bohai Sea and the northern Yellow Sea based on acid-volatile sulfide and simultaneously extracted metal results[J]. Marine Pollution Bulletin, 2013, 72(1): 281−288. doi: 10.1016/j.marpolbul.2013.02.007
    [22]
    Sheng Y Q, Sun Q Y, Shi W J, et al. Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China[J]. Environmental Earth Sciences, 2015, 74(2): 1151−1160. doi: 10.1007/s12665-015-4101-8
    [23]
    中国海湾志编纂委员会. 中国海湾志·第三分册(山东半岛北部和东部海湾)[M]. 北京: 海洋出版社, 1991: 50−51.

    Compilation Committee of Gulf Records of China. Bays of China. Volume 3 (Bays of Northern and Eastern Shandong Peninsula)[M]. Beijing: Ocean Press, 1991: 50−51.
    [24]
    梁生康, 李姗姗, 马浩阳, 等. 基于陆海同步调查的莱州湾营养盐时空分布及限制因子分析[J]. 中国海洋大学学报, 2022, 52(8): 97−110.

    Liang S K, Li S S, Ma H Y, et al. Spatial-temporal distributions and limiting factors of nutrients in Laizhou Bay based on land-sea synchronous survey[J]. Periodical of Ocean University of China, 2022, 52(8): 97−110.
    [25]
    Zhang L J, Wang L, Cai W J, et al. Impact of human activities on organic carbon transport in the Yellow River[J]. Biogeosciences, 2013, 10(4): 2513−2524. doi: 10.5194/bg-10-2513-2013
    [26]
    Wu X, Bi N S, Kanai Y, et al. Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years[J]. Journal of Asian Earth Sciences, 2015, 108: 68−80. doi: 10.1016/j.jseaes.2015.04.028
    [27]
    Zhou L Y, Liu J, Saito Y, et al. Sediment budget of the Yellow River delta during 1959−2012, estimated from morphological changes and accumulation rates[J]. Marine Geology, 2020, 430: 106363. doi: 10.1016/j.margeo.2020.106363
    [28]
    Zhou L Y, Liu J, Saito Y, et al. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe)[J]. Geo-Marine Letters, 2016, 36(4): 247−258. doi: 10.1007/s00367-016-0442-x
    [29]
    Lenstra W K, Klomp R, Molema F, et al. A sequential extraction procedure for particulate manganese and its application to coastal marine sediments[J]. Chemical Geology, 2021, 584: 120538. doi: 10.1016/j.chemgeo.2021.120538
    [30]
    Burdige D J, Christensen J P. Iron biogeochemistry in sediments on the western continental shelf of the Antarctic Peninsula[J]. Geochimica et Cosmochimica Acta, 2022, 326: 288−312. doi: 10.1016/j.gca.2022.03.013
    [31]
    Cornell R M, Giovanoli R. Acid dissolution of akaganiéite and lepidocrocite: the effect on crystal morphology[J]. Clays and Clay Minerals, 1988, 36(5): 385−390. doi: 10.1346/CCMN.1988.0360501
    [32]
    Stookey L L. Ferrozine-a new spectrophotometric reagent for iron[J]. Analytical Chemistry, 1970, 42(7): 779−781. doi: 10.1021/ac60289a016
    [33]
    Burton E D, Sullivan L A, Bush R T, et al. A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils[J]. Applied Geochemistry, 2008, 23(9): 2759−2766. doi: 10.1016/j.apgeochem.2008.07.007
    [34]
    Qin S S, Zhu M X, Yang G P, et al. Atypical diagenesis of sulfur and iron in sediments of the river-dominated Bohai Sea (China)[J]. Journal of Marine Systems, 2019, 189: 116−126. doi: 10.1016/j.jmarsys.2018.10.004
    [35]
    Cline J D. Spectrophotometric determination of hydrogen sulfide in natural waters[J]. Limnology and Oceanography, 1969, 14(3): 454−458. doi: 10.4319/lo.1969.14.3.0454
    [36]
    Berg P, Risgaard-Petersen N, Rysgaard S. Interpretation of measured concentration profiles in sediment pore water[J]. Limnology and Oceanography, 1998, 43(7): 1500−1510. doi: 10.4319/lo.1998.43.7.1500
    [37]
    Boudreau B P. Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments[M]. Berlin: Springer, 1997.
    [38]
    Boudreau B P. Is burial velocity a master parameter for bioturbation?[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1243−1249. doi: 10.1016/0016-7037(94)90378-6
    [39]
    Rickard D, Morse J W. Acid volatile sulfide (AVS)[J]. Marine Chemistry, 2005, 97(3/4): 141−197.
    [40]
    Goldhaber M B. Sulfur-rich sediments[J]. Treatise on Geochemistry, 2003, 7: 257−288.
    [41]
    Zimmerman A R, Canuel E A. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition[J]. Marine Chemistry, 2000, 69(1/2): 117−137.
    [42]
    Wang X C, Ma H Q, Li R H, et al. Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: the Yellow River and Changjiang (Yangtze) River[J]. Global Biogeochemical Cycles, 2012, 26(2): GB2025.
    [43]
    Hu L M, Guo Z G, Feng J L, et al. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China[J]. Marine Chemistry, 2009, 113(3/4): 197−211.
    [44]
    Kao S J, Lin F J, Liu K K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough[J]. Deep−Sea Research Part II: Topical Studies in Oceanography, 2003, 50(6/7): 1203−1217.
    [45]
    Liu X, Huang B Q, Huang Q, et al. Seasonal phytoplankton response to physical processes in the southern Yellow Sea[J]. Journal of Sea Research, 2015, 95: 45−55. doi: 10.1016/j.seares.2014.10.017
    [46]
    Keil R G, Tsamakis E, Fuh C B, et al. Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 879−893. doi: 10.1016/0016-7037(94)90512-6
    [47]
    Jilbert T, Asmala E, Schröder C, et al. Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments[J]. Biogeosciences, 2018, 15(4): 1243−1271. doi: 10.5194/bg-15-1243-2018
    [48]
    Zhu M X, Chen K K, Yang G P, et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts (MMBs)[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(11): 2811−2828. doi: 10.1002/2016JG003391
    [49]
    Jensen M M, Thamdrup B, Rysgaard S, et al. Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition[J]. Biogeochemistry, 2003, 65(3): 295−317. doi: 10.1023/A:1026261303494
    [50]
    Ma W W, Zhu M X, Yang G P, et al. In situ, high-resolution DGT measurements of dissolved sulfide, iron and phosphorus in sediments of the East China Sea: insights into phosphorus mobilization and microbial iron reduction[J]. Marine Pollution Bulletin, 2017, 124(1): 400−410. doi: 10.1016/j.marpolbul.2017.07.056
    [51]
    McManus J, Berelson W M, Severmann S, et al. Benthic manganese fluxes along the Oregon–California continental shelf and slope[J]. Continental Shelf Research, 2012, 43: 71−85. doi: 10.1016/j.csr.2012.04.016
    [52]
    Severmann S, McManus J, Berelson W M, et al. The continental shelf benthic iron flux and its isotope composition[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3984−4004. doi: 10.1016/j.gca.2010.04.022
    [53]
    Shi X M, Wei L, Hong Q Q, et al. Large benthic fluxes of dissolved iron in China coastal seas revealed by 224Ra/228Th disequilibria[J]. Geochimica et Cosmochimica Acta, 2019, 260: 49−61. doi: 10.1016/j.gca.2019.06.026
    [54]
    Warnken K W, Gill G A, Griffin L L, et al. Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas[J]. Marine Chemistry, 2001, 73(3/4): 215−231.
    [55]
    Lenstra W K, Hermans M, Séguret M J M, et al. The shelf-to-basin iron shuttle in the Black Sea revisited[J]. Chemical Geology, 2019, 511: 314−341. doi: 10.1016/j.chemgeo.2018.10.024
    [56]
    Richard D, Sundby B, Mucci A. Kinetics of manganese adsorption, desorption, and oxidation in coastal marine sediments[J]. Limnology and Oceanography, 2013, 58(3): 987−996. doi: 10.4319/lo.2013.58.3.0987
    [57]
    Lenstra W K, Séguret M J M, Behrends T, et al. Controls on the shuttling of manganese over the northwestern Black Sea shelf and its fate in the euxinic deep basin[J]. Geochimica et Cosmochimica Acta, 2020, 273: 177−204. doi: 10.1016/j.gca.2020.01.031
    [58]
    Lenstra W K, van Helmond N A G M, Żygadłowska O M, et al. Sediments as a source of iron, manganese, cobalt and nickel to continental shelf waters (Louisiana, Gulf of Mexico)[J]. Frontiers in Marine Science, 2022, 9: 811953. doi: 10.3389/fmars.2022.811953
    [59]
    Wehrmann L M, Formolo M J, Owens J D, et al. Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West Spitsbergen, Svalbard): evidence for a benthic recycling-transport mechanism[J]. Geochimica et Cosmochimica Acta, 2014, 141: 628−655. doi: 10.1016/j.gca.2014.06.007
    [60]
    Luther III G W. Pyrite synthesis via polysulfide compounds[J]. Geochimica et Cosmochimica Acta, 1991, 55(10): 2839−2849. doi: 10.1016/0016-7037(91)90449-F
    [61]
    Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record[J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4671−4692. doi: 10.1016/j.gca.2010.05.008
    [62]
    Ma W W, Zhu M X, Yang G P, et al. Diagenesis of sulfur, iron and phosphorus in sediments of an urban bay impacted by multiple anthropogenic perturbations[J]. Marine Pollution Bulletin, 2019, 146: 366−376. doi: 10.1016/j.marpolbul.2019.06.081
    [63]
    Berner R A, Raiswell R. C/S method for distinguishing freshwater from marine sedimentary rocks[J]. Geology, 1984, 12(6): 365−368. doi: 10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (116) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return