Citation: | Yu Renshi,Qu Ke,Wang Chao, et al. Experimental study on the influence of permeable trapezoidal reef on the hydrodynamic characteristics of solitary wave complex reefs[J]. Haiyang Xuebao,2024, 46(10):1–9 doi: 10.12284/hyxb2024113 |
[1] |
Cho Y S, Park K Y, Lin T H. Run-up heights of nearshore tsunamis based on quadtree grid system[J]. Ocean Engineering, 2004, 31(8/9): 1093−1109.
|
[2] |
Synolakis C E, Bernard E N. Tsunami science before and beyond Boxing Day 2004[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1845): 2231−2265. doi: 10.1098/rsta.2006.1824
|
[3] |
Kubota T, Saito T, Nishida K. Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption[J]. Science, 2022, 377(6601): 91−94. doi: 10.1126/science.abo4364
|
[4] |
Lynett P, McCann M, Zhou Zili, et al. Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption[J]. Nature, 2022, 609(7928): 728−733. doi: 10.1038/s41586-022-05170-6
|
[5] |
Ren Zhiyuan, Higuera P, Liu P L F. On tsunami waves induced by atmospheric pressure shock waves after the 2022 Hunga Tonga-Hunga Ha'apai volcano eruption[J]. Journal of Geophysical Research: Oceans, 2023, 128(4): e2022JC019166. doi: 10.1029/2022JC019166
|
[6] |
Yao Yu, He Tiancheng, Deng Zhengzhi, et al. Large eddy simulation modeling of tsunami-like solitary wave processes over fringing reefs[J]. Natural Hazards and Earth System Sciences, 2019, 19(6): 1281−1295. doi: 10.5194/nhess-19-1281-2019
|
[7] |
姚宇, 袁万成, 杜睿超, 等. 岸礁礁冠对波浪传播变形及增水影响的实验研究[J]. 热带海洋学报, 2015, 34(6): 19−25. doi: 10.11978/2015031
Yao Yu, Yuan Wancheng, Du Ruichao, et al. Experimental study of reef crest's effects on wave transformation and wave-induced setup over fringing reefs[J]. Journal of Tropical Oceanography, 2015, 34(6): 19−25. doi: 10.11978/2015031
|
[8] |
Young I R. Wave transformation over coral reefs[J]. Journal of Geophysical Research: Oceans, 1989, 94(C7): 9779−9789. doi: 10.1029/JC094iC07p09779
|
[9] |
Titov V, Rabinovich A B, Mofjeld H O, et al. The global reach of the 26 December 2004 Sumatra tsunami[J]. Science, 2005, 309(5743): 2045−2048. doi: 10.1126/science.1114576
|
[10] |
Danielsen F, Sørensen M K, Olwig M F, et al. The Asian tsunami: a protective role for coastal vegetation[J]. Science, 2005, 310(5748): 643−643. doi: 10.1126/science.1118387
|
[11] |
“中国工程科技2035发展战略研究”海洋领域课题组. 中国海洋工程科技2035发展战略研究[J]. 中国工程科学, 2017, 19(1): 108−117. doi: 10.15302/J-SSCAE-2017.01.016
Task Force for the Research on China’s Engineering Science and Technology Development Strategy 2035 Marine Research Group. Development strategy for China's marine engineering science and technology to 2035[J]. Strategic Study of CAE, 2017, 19(1): 108−117. doi: 10.15302/J-SSCAE-2017.01.016
|
[12] |
Fang Kezhao, Xiao Li, Liu Zhongbo, et al. Experiment and RANS modeling of solitary wave impact on a vertical wall mounted on a reef flat[J]. Ocean Engineering, 2022, 244: 110384. doi: 10.1016/j.oceaneng.2021.110384
|
[13] |
刘铁威, 屈科, 黄竞萱, 等. 孤立波在透水岸礁上水动力特性数值模拟研究[J]. 水动力学研究与进展, 2021, 36(2): 180−191.
Liu Tiewei, Qu Ke, Huang Jingxuan, et al. Numerical investigation of hydrodynamic characteristics of solitary wave over permeable fringing reef[J]. Chinese Journal of Hydrodynamics, 2021, 36(2): 180−191.
|
[14] |
Yao Yu, He Fang, Tang Zhengjiang, et al. A study of tsunami-like solitary wave transformation and run-up over fringing reefs[J]. Ocean Engineering, 2018, 149: 142−155. doi: 10.1016/j.oceaneng.2017.12.020
|
[15] |
袁涛, 施奇佳, 姚宇, 等. 人工礁研究进展与展望[J]. 热带海洋学报, 2023, 42(1): 192−203. doi: 10.11978/2022027
Yuan Tao, Shi Qijia, Yao Yu, et al. Research progresses and prospects of the artificial reefs[J]. Journal of Tropical Oceanography, 2023, 42(1): 192−203. doi: 10.11978/2022027
|
[16] |
Liu T L, Su D T. Numerical analysis of the influence of reef arrangements on artificial reef flow fields[J]. Ocean Engineering, 2013, 74: 81−89. doi: 10.1016/j.oceaneng.2013.09.006
|
[17] |
于定勇, 王逢雨, 张彩霞, 等. 梯型台人工鱼礁体流场效应数值研究[J]. 中国海洋大学学报, 2020, 50(12): 135−143.
Yu Dingyong, Wang Fengyu, Zhang Caixia, et al. Research on flow field around trapezoidal artificial reefs[J]. Periodical of Ocean University of China, 2020, 50(12): 135−143
|
[18] |
成泽毅, 叶灿, 高宇, 等. 不同布设间距和来流速度下方型人工鱼礁上升流效应的数值模拟[J]. 海洋与湖沼, 2023, 54(3): 665−678. doi: 10.11693/hyhz20221000262
Cheng Zeyi, Ye Can, Gao Yu, et al. Scheme analysis of upwelling effects in artificial reefs in different layouts[J]. Oceanologia et Limnologia Sinica, 2023, 54(3): 665−678. doi: 10.11693/hyhz20221000262
|
[19] |
Zhu Gancheng, Ren Bing, Wen Hongjie, et al. Analytical and experimental study of wave setup over permeable coral reef[J]. Applied Ocean Research, 2019, 90: 101859. doi: 10.1016/j.apor.2019.101859
|
[20] |
刘同渝. 人工鱼礁的流态效应[J]. 水产科技, 2003(6): 43−44.
Liu Tongyu. Flow pattern effect of artificial reefs[J]. Fishery Science and Technology, 2003(6): 43−44. (查阅网上资料, 未找到本条文献英文翻译, 请确认)
|
[21] |
王旭, 屈科, 门佳. 透水珊瑚岸礁亚重力波水动力特性数值研究[J]. 海洋学报, 2023, 45(9): 152−167.
Wang Xu, Qu Ke, Men Jia. Numerical study on infragravity wave hydrodynamics of permeable fringing reef[J]. Haiyang Xuebao, 2023, 45(9): 152−167.
|
[22] |
Neelamani S, Rajendran R. Wave interaction with T-type breakwaters[J]. Ocean Engineering, 2002, 29(2): 151−175. doi: 10.1016/S0029-8018(00)00060-3
|