Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Zhang Mengli,Zhang Chunling,Fan Jiahui, et al. Real-time internal structure construction of mesoscale eddy based on gradient-dependent OI method in the Kuroshio-Oyashio confluence region[J]. Haiyang Xuebao,2024, 46(10):1–12 doi: 10.12284/hyxb2024105
Citation: Zhang Mengli,Zhang Chunling,Fan Jiahui, et al. Real-time internal structure construction of mesoscale eddy based on gradient-dependent OI method in the Kuroshio-Oyashio confluence region[J]. Haiyang Xuebao,2024, 46(10):1–12 doi: 10.12284/hyxb2024105

Real-time internal structure construction of mesoscale eddy based on gradient-dependent OI method in the Kuroshio-Oyashio confluence region

doi: 10.12284/hyxb2024105
  • Received Date: 2024-05-15
  • Rev Recd Date: 2024-08-13
  • Available Online: 2024-09-30
  • The real-time changes of the internal water structure accompanied by the evolution of eddies have always been one of the important influencing factors to further study the ecological effects of mesoscale eddies. Based on satellite altimeter and Argo profile data, the gradient-dependent optimal interpolation method is used to construct the real-time internal structures of eddies. The reliability and effectiveness of this method in constructing the real-time structures of eddies are systematically evaluated through comparison with satellite observation, in-situ data and numerical simulation data. The results show that the orders of magnitude for the reconstructed velocity of three eddies are consistent with satellite altimetry. Compared with the in-situ data of the ADCP (Acoustic Doppler Current Profiler, ADCP), it is found that the locations of the eddy centers are coincident with the velocity turning position of the ADCP observed sections. The fluctuation shapes and amplitudes of the isodensity lines of the three eddies are consistent with the XCTD (Expendable Conductivity-Temperature-Depth, XCTD) observations. In addition, the eddy center and mean radius of the numerical output are basically consistent with the constructed ones. Therefore, the gradient-dependent OI was a hopeful technique for representing the real-time internal features during eddy evolution.
  • loading
  • [1]
    Siegel D A, Peterson P, McGillicuddy D J, et al. Bio-optical footprints created by mesoscale eddies in the Sargasso Sea[J]. Geophysical Research Letters, 2011, 38(13): L13608.
    [2]
    Chen Gengxin, Hou Yijun, Chu Xiaoqing. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6): C06018.
    [3]
    Chen Gengxin, Hou Yijun, Zhang Qilong, et al. The eddy pair off eastern Vietnam: interannual variability and impact on thermohaline structure[J]. Continental Shelf Research, 2010, 30(7): 715−723. doi: 10.1016/j.csr.2009.11.013
    [4]
    何忠杰. 西北太平洋副热带逆流区及其邻近海域中尺度涡研究[D]. 青岛: 中国海洋大学, 2007.

    He Zhongjie. Study of mesoscale eddies in the subtropical ocean of the Northwest-Pacific and adjacent area[D]. Qingdao: Ocean University of China, 2007.
    [5]
    Yang Guang, Wang Fan, Li Yuanlong, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three‐dimensional structures[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1906−1925. doi: 10.1002/jgrc.20164
    [6]
    Bibby T S, Moore C M. Silicate: nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific[J]. Biogeosciences, 2011, 8(3): 657−666. doi: 10.5194/bg-8-657-2011
    [7]
    Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
    [8]
    Chaigneau A, Le Texier M, Eldin G, et al. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11): C11025.
    [9]
    胡冬, 陈希, 毛科峰, 等. 南印度洋中尺度涡统计特征及三维合成结构研究[J]. 海洋学报, 2017, 39(9): 1−14. doi: 10.3969/j.issn.0253-4193.2017.09.001

    Hu Dong, Chen Xi, Mao Kefeng, et al. Statistical characteristics and composed three dimensional structures of mesoscale eddies in the South Indian Ocean[J]. Haiyang Xuebao, 2017, 39(9): 1−14. doi: 10.3969/j.issn.0253-4193.2017.09.001
    [10]
    谢旭丹, 王静, 储小青, 等. 南海中尺度涡温盐异常三维结构[J]. 海洋学报, 2018, 40(4): 1−14. doi: 10.3969/j.issn.0253-4193.2018.04.001

    Xie Xudan, Wang Jing, Chu Xiaoqing, et al. Three-dimensional thermohaline anomaly structures of mesoscale eddies in the South China Sea[J]. Haiyang Xuebao, 2018, 40(4): 1−14. doi: 10.3969/j.issn.0253-4193.2018.04.001
    [11]
    张正光. 中尺度涡[D]. 青岛: 中国海洋大学, 2014.

    ZHANG Zhengguang. Mesoscale eddy[D]. Qingdao: Ocean University of China, 2014.
    [12]
    Lin Xiayan, Dong Changming, Chen Dake, et al. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 99: 46−64. doi: 10.1016/j.dsr.2015.01.007
    [13]
    Sun Wenjin, Dong Changming, Wang Ruyun, et al. Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1476−1496. doi: 10.1002/2016JC012226
    [14]
    Zhang Chunling, Xu Jianping, Bao Xianwen, et al. An effective method for improving the accuracy of Argo objective analysis[J]. Acta Oceanologica Sinica, 2013, 32(7): 66−77. doi: 10.1007/s13131-013-0333-1
    [15]
    Cressman G P. An operational objective analysis system[J]. Monthly Weather Review, 1959, 87(10): 367−374. doi: 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
    [16]
    Evensen G. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans, 1994, 99(C5): 10143−10162. doi: 10.1029/94JC00572
    [17]
    Evensen G. The Ensemble Kalman Filter: theoretical formulation and practical implementation[J]. Ocean Dynamics, 2003, 53(4): 343−367. doi: 10.1007/s10236-003-0036-9
    [18]
    Zhang Chunling, Wang Zhenfeng, Liu Yu. An argo-based experiment providing near-real-time subsurface oceanic environmental information for fishery data[J]. Fisheries Oceanography, 2021, 30(1): 85−98. doi: 10.1111/fog.12504
    [19]
    Nencioli F, Dong Changming, Dickey T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564−579. doi: 10.1175/2009JTECHO725.1
    [20]
    Hosoda S, Ohira T, Nakamura T. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations[J]. JAMSTEC Report of Research and Development, 2008, 8: 47−59. doi: 10.5918/jamstecr.8.47
    [21]
    Li Z Q, Liu Zenghong, Lu S L. Global Argo data fast receiving and post-quality-control system[J]. IOP Conference Series: Earth and Environmental Science, 2020, 502(1): 012012. doi: 10.1088/1755-1315/502/1/012012
    [22]
    Akima H. A new method of interpolation and smooth curve fitting based on local procedures[J]. Journal of the ACM, 1970, 17(4): 589−602. doi: 10.1145/321607.321609
    [23]
    Zhang Chunling, Wang Danyang, Liu Zenghong, et al. Global gridded Argo dataset based on gradient-dependent optimal interpolation[J]. Journal of Marine Science and Engineering, 2022, 10(5): 650. doi: 10.3390/jmse10050650
    [24]
    Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability[M]. Cambridge: Cambridge University Press, 2003.
    [25]
    Li Hong, Xu Fanghua, Wang Guihua, et al. A multi-layer linear rossby wave dispersion relation for vertical tilt of mesoscale eddies[J]. Journal of Geophysical Research: Oceans, 2022, 127(12): e2022JC018703. doi: 10.1029/2022JC018703
    [26]
    Pond S, Pickard G L. Introductory Dynamical Oceanography[M]. 2nd ed. Oxford: Butterworth-Heinemann, 1983.
    [27]
    Martin M, Dash P, Ignatov A, et al. Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: a GHRSST multi-product ensemble (GMPE)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 77−80: 21−30. doi: 10.1016/j.dsr2.2012.04.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (72) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return