Citation: | Wang Yuze,Xu Tengfei,Wang Yanfeng, et al. Similarities and differences in statistical characteristics of mesoscale eddies between southeastern tropical Indian Ocean and northern South China Sea[J]. Haiyang Xuebao,2024, 46(10):1–13 doi: 10.12284/hyxb2024101 |
[1] |
Rossby T, Flagg C, Ortner P, et al. A tale of two eddies: diagnosing coherent eddies through acoustic remote sensing[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12): C12017. doi: 10.1029/2011JC007307
|
[2] |
李立. 南海中尺度海洋现象研究概述[J]. 台湾海峡, 2002, 21(2): 265−274.
Li Li. A review on mesoscale oceanographical phenomena in the South China Sea[J]. Journal of Oceanography in Taiwan Strait, 2002, 21(2): 265−274.
|
[3] |
Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
|
[4] |
Yim B Y, Noh Y, Qiu Bo, et al. The vertical structure of eddy heat transport simulated by an eddy-resolving OGCM[J]. Journal of Physical Oceanography, 2010, 40(2): 340−353. doi: 10.1175/2009JPO4243.1
|
[5] |
Early J J, Samelson R M, Chelton D B. The evolution and propagation of quasigeostrophic ocean eddies[J]. Journal of Physical Oceanography, 2011, 41(8): 1535−1555. doi: 10.1175/2011JPO4601.1
|
[6] |
Qiu Bo, Chen Shuiming. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements[J]. Journal of Physical Oceanography, 2005, 35(4): 458−473. doi: 10.1175/JPO2696.1
|
[7] |
Dong Changming, Nencioli F, Liu Yu, et al. An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1055−1059. doi: 10.1109/LGRS.2011.2155029
|
[8] |
赵新华, 侯一筠, 刘泽, 等. 基于卫星高度计和浮标漂流轨迹的海洋涡旋特征信息对比分析[J]. 海洋与湖沼, 2019, 50(4): 759−764. doi: 10.11693/hyhz20181100269
Zhao Xinhua, Hou Yijun, Liu Ze, et al. Analysis of the global eddies based on altimeter snapshots and buoy drifting trajectory data[J]. Oceanologia et Limnologia Sinica, 2019, 50(4): 759−764. doi: 10.11693/hyhz20181100269
|
[9] |
程旭华, 齐义泉. 基于卫星高度计观测的全球中尺度涡的分布和传播特征[J]. 海洋科学进展, 2008, 26(4): 447−453. doi: 10.3969/j.issn.1671-6647.2008.04.005
Cheng Xuhua, Qi Yiquan. Distribution and propagation of mesoscale eddies in the global oceans learnt from altimetric data[J]. Advances in Marine Science, 2008, 26(4): 447−453. doi: 10.3969/j.issn.1671-6647.2008.04.005
|
[10] |
Zu Yongcan, Fang Yue, Sun Shuangwen, et al. Seasonal variation of mesoscale eddy intensity in the global ocean[J]. Acta Oceanologica Sinica, 2024, 43(1): 48−58. doi: 10.1007/s13131-023-2278-3
|
[11] |
Feng Ming, Wijffels S. Intraseasonal variability in the south equatorial current of the East Indian Ocean[J]. Journal of Physical Oceanography, 2002, 32(1): 265−277. doi: 10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2
|
[12] |
Yu Zhiyu, Potemra J. Generation mechanism for the intraseasonal variability in the Indo-Australian basin[J]. Journal of Geophysical Research: Oceans, 2006, 111(C1): C01013.
|
[13] |
Hanifah F, Ningsih N S, Sofian I. Dynamics of eddies in the southeastern tropical Indian Ocean[J]. Journal of Physics: Conference Series, 2016, 739: 012042. doi: 10.1088/1742-6596/739/1/012042
|
[14] |
Yang Guang, Yu Weidong, Yuan Yeli, et al. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2015, 120(10): 6733−6750. doi: 10.1002/2015JC011130
|
[15] |
Wang Xuan, Cheng Xuhua, Liu Xiaohui, et al. Dynamics of eddy generation in the southeast tropical Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2021, 126(3): e2020JC016858. doi: 10.1029/2020JC016858
|
[16] |
Ismail M F A, Ribbe J, Arifin T, et al. A census of eddies in the tropical eastern boundary of the Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2021, 126(6): e2021JC017204. doi: 10.1029/2021JC017204
|
[17] |
Metzger E J, Hurlburt H E. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea[J]. Journal of Physical Oceanography, 2001, 31(7): 1712−1732. doi: 10.1175/1520-0485(2001)031<1712:TNNOKP>2.0.CO;2
|
[18] |
Li Li, Nowlin Jr W D, Su Jilan. Anticyclonic rings from the Kuroshio in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(9): 1469−1482. doi: 10.1016/S0967-0637(98)00026-0
|
[19] |
郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
Zheng Quan’an, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
|
[20] |
王萌, 张艳伟, 刘志飞, 等. 南海北部中尺度涡的时空分布特征: 基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069−1080. doi: 10.11867/j.issn.1001-8166.2019.10.1069
Wang Meng, Zhang Yanwei, Liu Zhifei, et al. Temporal and spatial characteristics of mesoscale eddies in the northern South China Sea: statistics analysis based on altimeter data[J]. Advances in Earth Science, 2019, 34(10): 1069−1080. doi: 10.11867/j.issn.1001-8166.2019.10.1069
|
[21] |
Yuan Dongliang, Han Weiqing, Hu Dunxin. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11007.
|
[22] |
Caruso M J, Gawarkiewicz G G, Beardsley R C. Interannual variability of the Kuroshio intrusion in the South China Sea[J]. Journal of Oceanography, 2006, 62(4): 559−575. doi: 10.1007/s10872-006-0076-0
|
[23] |
Wang Liping, Koblinsky C J, Howden S. Mesoscale variability in the South China Sea from the Topex/Poseidon altimetry data[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(4): 681−708. doi: 10.1016/S0967-0637(99)00068-0
|
[24] |
林鹏飞, 王凡, 陈永利, 等. 南海中尺度涡的时空变化规律Ⅰ. 统计特征分析[J]. 海洋学报, 2007, 29(3): 14−22. doi: 10.3321/j.issn:0253-4193.2007.03.002
Lin Pengfei, Wang Fan, Chen Yongli, et al. Temporal and spatial variation characteristics on eddies in the South China Sea Ⅰ. Statistical analyses[J]. Haiyang Xuebao, 2007, 29(3): 14−22. doi: 10.3321/j.issn:0253-4193.2007.03.002
|
[25] |
Ogata T, Masumoto Y. Interactions between mesoscale eddy variability and Indian Ocean dipole events in the Southeastern tropical Indian Ocean—case studies for 1994 and 1997/1998[J]. Ocean Dynamics, 2010, 60(3): 717−730. doi: 10.1007/s10236-010-0304-4
|
[26] |
Ogata T, Masumoto Y. Interannual modulation and its dynamics of the mesoscale eddy variability in the southeastern tropical Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05005.
|
[27] |
崔凤娟, 匡晓迪, 王玉. 南海中尺度涡年际变化特征及动力机制分析[J]. 海洋与湖沼, 2015, 46(3): 508−516. doi: 10.11693/hyhz20140900242
Cui Fengjuan, Kuang Xiaodi, Wang Yu. The analysis on interannual variation characteristics of eddy activities and its dynamic mechanism in the South China Sea[J]. Oceanologia et Limnologia Sinica, 2015, 46(3): 508−516. doi: 10.11693/hyhz20140900242
|
[28] |
Chen Gengxin, Wang Dongxiao, Han Weiqing, et al. The extreme El Niño events suppressing the intraseasonal variability in the eastern tropical Indian Ocean[J]. Journal of Physical Oceanography, 2020, 50(8): 2359−2372. doi: 10.1175/JPO-D-20-0041.1
|
[29] |
Chen Gengxin, Hou Yijun, Chu Xiaoqing, et al. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(4): 943−954. doi: 10.1007/s00343-009-9297-6
|
[30] |
刘钦燕, 黄瑞新, 王东晓, 等. 印度尼西亚贯穿流与南海贯穿流的相互调制[J]. 科学通报, 2006, 51(S2): 44−50.
Liu Qinyan, Huang Ruixin, Wang Dongxiao, et al. Interplay between the Indonesian throughflow and the South China Sea throughflow[J]. Chinese Science Bulletin, 2006, 51(S2): 50−58.
|
[31] |
Wang Dongxiao, Liu Qinyan, Huang Ruixin, et al. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product[J]. Geophysical Research Letters, 2006, 33(14): L14605.
|
[32] |
Zu Yongcan, Fang Yue, Sun Shuangwen, et al. The Seasonality of mesoscale eddy intensity in the southeastern tropical Indian Ocean[J]. Frontiers in Marine Science, 2022, 9: 855832. doi: 10.3389/fmars.2022.855832
|
[33] |
Syamsudin F, Kaneko A. Ocean variability along the southern coast of Java and Lesser Sunda Islands[J]. Journal of Oceanography, 2013, 69(5): 557−570. doi: 10.1007/s10872-013-0192-6
|
[34] |
Li Jiaxun, Zhang Ren, Jin Baogang. Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data[J]. Ocean Science, 2011, 7(5): 661−669. doi: 10.5194/os-7-661-2011
|
[35] |
林宏阳, 胡建宇, 郑全安. 南海及西北太平洋卫星高度计资料分析: 海洋中尺度涡统计特征[J]. 台湾海峡, 2012, 31(1): 105−113.
Lin Hongyang, Hu Jianyu, Zheng Quan’an. Satellite altimeter data analysis of the South China Sea and the northwest Pacific Ocean: statistical features of oceanic mesoscale eddies[J]. Journal of Oceanography in Taiwan Strait, 2012, 31(1): 105−113.
|
[36] |
林宏阳, 胡建宇, 郑全安. 吕宋海峡附近中尺度涡特征的统计分析[J]. 海洋学报, 2012, 34(1): 1−7.
Lin Hongyang, Hu Jianyu, Zheng Quan’an. Statistical analysis of the features of meso-scale eddies near the Luzon Strait[J]. Haiyang Xuebao, 2012, 34(1): 1−7.
|
[37] |
Pegliasco C, Busché C, Faugère Y. Mesoscale Eddy Trajectory Atlas META3.2 Delayed-Time two satellites: version META3.2 DT twosat[Z]. 2022. (查阅网上资料, 未能确认文献类型, 请确认文献类型及格式是否正确)
|
[38] |
Mason E, Pascual A, McWilliams J C. A new sea surface height–based code for oceanic mesoscale eddy tracking[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5): 1181−1188. doi: 10.1175/JTECH-D-14-00019.1
|
[39] |
龙霜, 董庆, 殷紫. 印度洋–太平洋暖池区中尺度涡特征研究[J]. 海洋学报, 2022, 44(3): 118−127. doi: 10.12284/j.issn.0253-4193.2022.3.hyxb202203011
Long Shuang, Dong Qing, Yin Zi. Statistical analysis of mesoscale eddies in the Indo-Pacific Warm Pool[J]. Haiyang Xuebao, 2022, 44(3): 118−127. doi: 10.12284/j.issn.0253-4193.2022.3.hyxb202203011
|
[40] |
Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606.
|
[41] |
胡冬, 陈希, 毛科峰, 等. 南印度洋中尺度涡统计特征及三维合成结构研究[J]. 海洋学报, 2017, 39(9): 1−14. doi: 10.3969/j.issn.0253-4193.2017.09.001
Hu Dong, Chen Xi, Mao Kefeng, et al. Statistical characteristics and composed three dimensional structures of mesoscale eddies in the South Indian Ocean[J]. Haiyang Xuebao, 2017, 39(9): 1−14. doi: 10.3969/j.issn.0253-4193.2017.09.001
|
[42] |
Yang Guang, Wang Fan, Li Yuanlong, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1906−1925. doi: 10.1002/jgrc.20164
|
[43] |
Morrow R, Birol F, Griffin D, et al. Divergent pathways of cyclonic and anti-cyclonic ocean eddies[J]. Geophysical Research Letters, 2004, 31(24): L24311.
|
[44] |
Chen Gengxin, Hou Yijun, Chu Xiaoqing. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6): C06018.
|
[45] |
Sangrà P, Pascual A, Rodríguez-Santana Á, et al. The Canary Eddy Corridor: a major pathway for long-lived eddies in the subtropical North Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(12): 2100−2114. doi: 10.1016/j.dsr.2009.08.008
|
[46] |
Peña-Molino B, Sloyan B M, Nikurashin M, et al. Revisiting the seasonal cycle of the Timor Throughflow: impacts of winds, waves and eddies[J]. Journal of Geophysical Research: Oceans, 2022, 127(4): e2021JC018133. doi: 10.1029/2021JC018133
|
[47] |
Li Yuanlong, Guo Yaru, Zhu Yanan, et al. Variability of heat content and eddy kinetic energy in the Southeast Indian Ocean: roles of the Indonesian throughflow and local wind forcing[J]. Journal of Physical Oceanography, 2022, 52(11): 2789−2806. doi: 10.1175/JPO-D-22-0051.1
|
[48] |
Zheng Shaojun, Feng Ming, Du Yan, et al. Interannual variability of eddy kinetic energy in the subtropical Southeast Indian Ocean associated with the El Niño-southern oscillation[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1048−1061. doi: 10.1002/2017JC013562
|