Citation: | Wang Lan,Wei Hao,Che Yachen, et al. Integration of category-quantity adaptive deep data augmentation and transfer learning for reef-building coral recognition[J]. Haiyang Xuebao,2024, 46(9):120–130 doi: 10.12284/hyxb2024096 |
[1] |
黄晖, 陈竹, 黄林韬. 中国珊瑚礁状况报告(2010−2019)[M]. 北京: 海洋出版社, 2021.
Huang Hui, Chen Zhu, Huang Lintao. Status of Coral Reefs in China (2010−2019)[M]. Beijing: China Ocean Press, 2021.
|
[2] |
Elliff C I, Silva I R. Coral reefs as the first line of defense: shoreline protection in face of climate change[J]. Marine Environmental Research, 2017, 127: 148−154. doi: 10.1016/j.marenvres.2017.03.007
|
[3] |
黄林韬, 黄晖, 江雷. 中国造礁石珊瑚分类厘定[J]. 生物多样性, 2020, 28(4): 515−523. doi: 10.17520/biods.2019384
Huang Lintao, Huang Hui, Jiang Lei. A revised taxonomy for Chinese hermatypic corals[J]. Biodiversity Science, 2020, 28(4): 515−523. doi: 10.17520/biods.2019384
|
[4] |
夏荣林, 宁志铭, 余克服, 等. 长棘海星暴发对珊瑚礁区沉积物营养盐动力学的影响研究[J]. 海洋学报, 2022, 44(8): 23−30. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208003
Xia Ronglin, Ning Zhiming, Yu Kefu, et al. Study on the impacts of crown-of-thorns starfish on nutrient dynamics in the coral reef sediments[J]. Haiyang Xuebao, 2022, 44(8): 23−30. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208003
|
[5] |
International Union for Conservation of Nature. The IUCN red list of threatened species, version 2022−2[R/OL]. [2023−07−06]. https://www.iucnredlist.org.
|
[6] |
Mahmood A, Bennamoun M, An S, et al. Deep learning for coral classification[M]//Samui P, Sekhar Roy S, Balas V E. Handbook of Neural Computation. London: Academic Press, 2017: 383-401.
|
[7] |
Marcos M S A C, Soriano M N, Saloma C A. Classification of coral reef images from underwater video using neural networks[J]. Optics Express, 2005, 13(22): 8766−8771. doi: 10.1364/OPEX.13.008766
|
[8] |
Pizarro O, Rigby P, Johnson-Roberson M, et al. Towards image-based marine habitat classification[C]//Proceedings of the OCEANS 2008. Quebec City, Canada: IEEE, 2008: 1−7.
|
[9] |
Elawady M. Sparse coral classification using deep convolutional neural networks[J]. arXiv: 1511.09067, 2015.
|
[10] |
Mahmood A, Bennamoun M, An S, et al. Resfeats: residual network based features for image classification[C]//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE, 2017: 1597−1601.
|
[11] |
Modasshir M, Li A Q, Rekleitis I. MDNet: multi-patch dense network for coral classification[C]//Proceedings of the OCEANS 2018 MTS/IEEE Charleston. Charleston, USA: IEEE, 2018: 1−6.
|
[12] |
Gómez-Ríos A, Tabik S, Luengo J, et al. Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation[J]. Expert Systems with Applications, 2019, 118: 315−328. doi: 10.1016/j.eswa.2018.10.010
|
[13] |
Lumini A, Nanni L, Maguolo G. Deep learning for plankton and coral classification[J]. Applied Computing and Informatics, 2023, 19(3/4): 265−283. doi: 10.1016/j.aci.2019.11.004
|
[14] |
Khan S H, Hayat M, Bennamoun M, et al. Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3573−3587. doi: 10.1109/TNNLS.2017.2732482
|
[15] |
Lee H, Park M, Kim J. Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning[C]//Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix, USA: IEEE, 2016: 3713−3717.
|
[16] |
Dablain D, Krawczyk B, Chawla N V. DeepSMOTE: fusing deep learning and SMOTE for imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 6390−6404. doi: 10.1109/TNNLS.2021.3136503
|
[17] |
Chinchor N. MUC-4 evaluation metrics[C]//Proceedings of the 4th Conference on Message Understanding. McLean, USA: Association for Computational Linguistics, 1992: 22−29.
|
[18] |
Alzubaidi L, Bai J, Al-Sabaawi A, et al. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications[J]. Journal of Big Data, 2023, 10(1): 1−82.
|
[19] |
Pan S J, Yang Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345−1359. doi: 10.1109/TKDE.2009.191
|
[20] |
Shihavuddin A S M. Coral reef dataset[EB/OL]. [2024-01-22]. https://data.mendeley.com/datasets/86y667257h/2.
|
[21] |
WoRMS. An authoritative classification and catalogue of marine names[EB/OL]. [2024-04-05]. https://www.marinespecies.org.
|
[22] |
Nanglu K, Lerosey-Aubril R, Weaver J C, et al. A mid-Cambrian tunicate and the deep origin of the ascidiacean body plan[J]. Nature Communications, 2023, 14(1): 3832. doi: 10.1038/s41467-023-39012-4
|
[23] |
Rodríguez L, López C, Casado-Amezua P, et al. Genetic relationships of the hydrocoral Millepora alcicornis and its symbionts within and between locations across the Atlantic[J]. Coral Reefs, 2019, 38(2): 255−268. doi: 10.1007/s00338-019-01772-1
|
[24] |
Shihavuddin A S M, Gracias N, Garcia R, et al. Image-based coral reef classification and thematic mapping[J]. Remote Sensing, 2013, 5(4): 1809−1841. doi: 10.3390/rs5041809
|
[25] |
Buda M, Maki A, Mazurowski M A. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2018, 106: 249−259. doi: 10.1016/j.neunet.2018.07.011
|
[26] |
Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML-10). Haifa, Israel: Omnipress, 2010: 807−814.
|
[27] |
Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321−357.
|
[28] |
Deng Jia, Dong Wei, Socher R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009: 248−255.
|