Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Tang Junhui,Liang Chujin,Zhao Hangfang, et al. Effects of soliton internal waves with different amplitudes on sound propagation characteristics[J]. Haiyang Xuebao,2024, 46(10):16–24 doi: 10.12284/hyxb2024095
Citation: Tang Junhui,Liang Chujin,Zhao Hangfang, et al. Effects of soliton internal waves with different amplitudes on sound propagation characteristics[J]. Haiyang Xuebao,2024, 46(10):16–24 doi: 10.12284/hyxb2024095

Effects of soliton internal waves with different amplitudes on sound propagation characteristics

doi: 10.12284/hyxb2024095
  • Received Date: 2024-03-06
  • Rev Recd Date: 2024-07-30
  • Publish Date: 2024-10-30
  • Based on the stratification characteristics of the South China Sea and the finite depth theoretical equation, the two-dimensional sound velocity field under different amplitudes of soliton internal waves is reconstructed by using the temperature and salinity data measured by submersible moorings and WOA2023 climate states. Combined with the BELLHOP ray acoustic model, the sound propagation loss, the ray path, the sound ray arrival structure and so on are simulated under different amplitudes of soliton internal waves environment. The simulation results show that soliton internal waves will change the propagation path of the sound rays. When the sound rays pass through the center of internal wave from the sea surface to the sea bottom or from the sea bottom to the sea surface, the horizontal direction of the sound rays track will be offset towards the sound source and away from the sound source, respectively. The larger the amplitude of soliton internal wave, the larger the offset distance of the sound rays track. Soliton internal waves can also change the arrival structure of the sound rays, and the sound signal will propagate to the receiving point faster when there are soliton internal wave conditions at a specific receiving point.
  • loading
  • [1]
    Osborne A R, Burch T L. Internal solitons in the Andaman Sea[J]. Science, 1980, 208(4443): 451−460. doi: 10.1126/science.208.4443.451
    [2]
    杨士莪. 水声传播原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2007.

    Yang Shie. Principles of Underwater Sound Propagation[M]. Harbin: Harbin Engineering University Press, 2007. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [3]
    张仁和. 水声物理、信号处理与海洋环境紧密结合是水声技术发展的趋势[J]. 应用声学, 2006, 25(6): 325−327. doi: 10.3969/j.issn.1000-310X.2006.06.001

    Zhang Renhe. The development trend of underwater acoustic technology is osculatory combination of underwater acoustic physics, signal processing and ocean environment[J]. Journal of Applied Acoustics, 2006, 25(6): 325−327. doi: 10.3969/j.issn.1000-310X.2006.06.001
    [4]
    Zhang Renhe, Li Zhenglin, Peng Zhaohui, et al. Overview of shallow water acoustics in the State Key Laboratory of Acoustics[J]. AIP Conference Proceedings, 2012, 1495(1): 16−35.
    [5]
    Zhou Jixun, Zhang Xuezhen, Rogers P H. Resonant interaction of sound wave with internal solitons in the coastal zone[J]. The Journal of the Acoustical Society of America, 1991, 90(4): 2042−2054. doi: 10.1121/1.401632
    [6]
    Apel J R, Badiey M, Chiu C S, et al. An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment[J]. IEEE Journal of Oceanic Engineering, 1997, 22(3): 465−500. doi: 10.1109/48.611138
    [7]
    Lynch J, Tang Dajun. Overview of shallow water 2006 JASA EL special issue papers[J]. The Journal of the Acoustical Society of America, 2008, 124(3): EL63−EL65. doi: 10.1121/1.2972156
    [8]
    Headrick R H, Lynch J F, Kemp J N, et al. Modeling mode arrivals in the 1995 SWARM experiment acoustic transmissions[J]. The Journal of the Acoustical Society of America, 2000, 107(1): 221−236. doi: 10.1121/1.428301
    [9]
    Tang Dajun, Moum J N, Lynch J F, et al. Shallow water’06: a joint acoustic propagation/nonlinear internal wave physics experiment[J]. Oceanography, 2007, 20(4): 156−167. doi: 10.5670/oceanog.2007.16
    [10]
    Sagers J D, Wilson P S. Modeling fluctuations in depth-integrated acoustic intensity induced by internal waves along a 2-D track[J]. IEEE Journal of Oceanic Engineering, 2017, 42(1): 231−241.
    [11]
    Parnum I M, MacLeod R, Duncan A J, et al. The effect of internal waves on underwater sound propagation[C]//Proceedings of ACOUSTICS 2017. Perth, Australia, 2017. (查阅网上资料, 未找到出版社信息, 请补充)
    [12]
    Noufal K K, Sanjana M C, Latha G, et al. Influence of internal wave induced sound speed variability on acoustic propagation in shallow waters of North West Bay of Bengal[J]. Applied Acoustics, 2022, 194: 108778. doi: 10.1016/j.apacoust.2022.108778
    [13]
    陈守虎, 吴立新, 张仁和, 等. 南中国海内波特征及其引起的声场起伏[J]. 自然科学进展, 2004, 14(10): 1163−1170.

    Chen Shouhu, Wu Lixin, Zhang Renhe, et al. Characterizations of the internal waves and their effect on the sound transmission in the midst of the South China sea[J]. Progress in Natural Science, 2004, 14(10): 1163−1170. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [14]
    宋俊, 李风华, 胡永明. 孤子内波对声场水平纵向相干特性的影响[J]. 声学技术, 2007, 26(2): 199−205. doi: 10.3969/j.issn.1000-3630.2007.02.008

    Song Jun, Li Fenghua, Hu Yongming. Effects of solitary internal wave on horizontal longitudinal coherence of shallow-water acoustic fields[J]. Technical Acoustics, 2007, 26(2): 199−205. doi: 10.3969/j.issn.1000-3630.2007.02.008
    [15]
    马树青, 杨士莪, 朴胜春, 等. 浅海孤立子内波对海洋声传播损失与声源定位的影响研究[J]. 振动与冲击, 2009, 28(11): 73−78.

    Ma Shuqing, Yang Shie, Piao Shengchun, et al. Influence of shallow water internal solitary waves on ocean sound propagation and source allocation[J]. Journal of Vibration and Shock, 2009, 28(11): 73−78.
    [16]
    邵云生. 孤子内波模拟及其声场影响研究[J]. 声学与电子工程, 2015(4): 29−32.

    Shao Yunsheng. Simulation of soliton internal waves and their impact on the sound field[J]. Acoustics and Electronics Engineering, 2015(4): 29−32. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [17]
    秦继兴, Katsnelson B, 李整林, 等. 浅海中孤立子内波引起的声能量起伏[J]. 声学学报, 2016, 41(2): 145−153.

    Qin Jixing, Katsnelson B, Li Zhenglin, et al. Intensity fluctuations due to the motion of internal solitons in shallow water[J]. Acta Acustica, 2016, 41(2): 145−153.
    [18]
    邢传玺, 宋扬, 刘文博, 等. 孤立子内波存在下的声传播仿真研究[J]. 云南民族大学学报(自然科学版), 2019, 28(4): 358−365.

    Xing Chuanxi, Song Yang, Liu Wenbo, et al. Simulation research on sound propagation in the perspective of internal soliton wave[J]. Journal of Yunnan Minzu University (Natural Sciences Edition), 2019, 28(4): 358−365.
    [19]
    Fofonoff N P, Millard Jr R C. Algorithms for computation of fundamental properties of seawater[R]. Paris: Unesco, 1983: 203−209.
    [20]
    Locarnini R A, Mishonov A V, Baranova O K, et al. World ocean atlas 2023, volume 1: temperature[EB/OL]. NOAA, National Centers for Environmental Information. https://repository.library.noaa.gov/view/noaa/60599, 2023-07-06.
    [21]
    Reagan J R, Seidov D, Wang Zhankun, et al. World ocean atlas 2023, volume 2: salinity[EB/OL]. NOAA, National Centers for Environmental Information. https://repository.library.noaa.gov/view/noaa/60600, 2023-07-06.
    [22]
    Kundu P K, Allen J S, Smith R L. Modal decomposition of the velocity field near the Oregon coast[J]. Journal of Physical Oceanography, 1975, 5(4): 683−704. doi: 10.1175/1520-0485(1975)005<0683:MDOTVF>2.0.CO;2
    [23]
    Pedlosky J. Geophysical Fluid Dynamics[M]. New York: Springer, 2013.
    [24]
    Cai Shuqun, Xie Jieshuo, Xu Jiexin, et al. Monthly variation of some parameters about internal solitary waves in the South China sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 84: 73−85. doi: 10.1016/j.dsr.2013.10.008
    [25]
    Joseph R I. Solitary waves in a finite depth fluid[J]. Journal of Physics A: Mathematical and General, 1977, 10(12): L225−L227. doi: 10.1088/0305-4470/10/12/002
    [26]
    Porter M B, Bucker H P. Gaussian beam tracing for computing ocean acoustic fields[J]. The Journal of the Acoustical Society of America, 1987, 82(4): 1349−1359. doi: 10.1121/1.395269
    [27]
    杨坤德, 雷波, 卢艳阳. 海洋声学典型声场模型的原理及应用[M]. 西安: 西北工业大学出版社, 2018.

    Yang Kunde, Lei Bo, Lu Yanyang. Principles and Applications of Typical Sound Field Models in Marine Acoustics[M]. Xi’an: Northwestern Polytechnical University Press, 2018. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [28]
    曹震卿, 张永刚, 李庆红, 等. 季节因素对大西洋声传播的影响分析[J]. 应用海洋学学报, 2018, 37(4): 514−524. doi: 10.3969/J.ISSN.2095-4972.2018.04.007

    Cao Zhenqing, Zhang Yonggang, Li Qinghong, et al. Impact of seasonal factors on the acoustic propagation in Atlantic Ocean[J]. Journal of Applied Oceanography, 2018, 37(4): 514−524. doi: 10.3969/J.ISSN.2095-4972.2018.04.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (52) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return