Citation: | Liu Yuxin,Deng Shanshan,Zhang Wenxi, et al. The evolution of global sea level fingerprints under multiplescenarios[J]. Haiyang Xuebao,2024, 46(10):1–15 doi: 10.12284/hyxb2024093 |
[1] |
胡宝怡, 王磊. 陆地水储量变化及其归因: 研究综述及展望[J]. 水利水电技术, 2021, 52(5): 13−25.
Hu Baoyi, Wang Lei. Terrestrial water storage change and its attribution: a review and perspective[J]. Water Resources and Hydropower Engineering, 2021, 52(5): 13−25.
|
[2] |
Rodell M, Famiglietti J S, Wiese D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7707): 651−659. doi: 10.1038/s41586-018-0123-1
|
[3] |
Frederikse T, Landerer F, Caron L, et al. The causes of sea-level rise since 1900[J]. Nature, 2020, 584(7821): 393−397. doi: 10.1038/s41586-020-2591-3
|
[4] |
Cazenave A, Moreira L. Contemporary sea-level changes from global to local scales: a review[J]. Proceedings of the Royal Society A-Mathematical, Physical and Engineering Sciences, 2022, 478(2261): 20220049. doi: 10.1098/rspa.2022.0049
|
[5] |
Zhang Juanjuan, Fu Qi, Huang Yu, et al. Negative impacts of sea-level rise on soil microbial involvement in carbon metabolism[J]. Science of the Total Environment, 2022, 838: 156087. doi: 10.1016/j.scitotenv.2022.156087
|
[6] |
Aghakouchak A, Chiang F, Huning L S, et al. Climate extremes and compound hazards in a warming world[J]. Annual Review of Earth and Planetary Sciences, 2020, 48: 519−548. doi: 10.1146/annurev-earth-071719-055228
|
[7] |
Alhamid A K, Akiyama M, Aoki K, et al. Stochastic renewal process model of time-variant tsunami hazard assessment under nonstationary effects of sea-level rise due to climate change[J]. Structural Safety, 2022, 99: 102263. doi: 10.1016/j.strusafe.2022.102263
|
[8] |
Wollschlaeger S, Sadhu A, Ebrahimi G, et al. Investigation of climate change impacts on long-term care facility occupants[J]. City and Environment Interactions, 2022, 13: 100077. doi: 10.1016/j.cacint.2021.100077
|
[9] |
Intergovernmental Panel on Climate Change. Climate Change 2021 – the Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2023. (查阅网上资料, 未找到本条文献出版地信息, 请确认)
|
[10] |
Adhikari S, Ivins E R, Frederikse T, et al. Sea-level fingerprints emergent from GRACE mission data[J]. Earth System Science Data, 2019, 11(2): 629−646. doi: 10.5194/essd-11-629-2019
|
[11] |
Coulson S, Dangendorf S, Mitrovica J X, et al. A detection of the sea level fingerprint of Greenland ice sheet melt[J]. Science, 2022, 377(6614): 1550−1554. doi: 10.1126/science.abo0926
|
[12] |
Gregory J M, Griffies S M, Hughes C W, et al. Concepts and terminology for sea level: mean, variability and change, both local and global[J]. Surveys in Geophysics, 2019, 40(6): 1251−1289. doi: 10.1007/s10712-019-09525-z
|
[13] |
Moreira L, Cazenave A, Barnoud A, et al. Sea-level fingerprints due to present-day water mass redistribution in observed sea-level data[J]. Remote Sensing, 2021, 13(22): 4667. doi: 10.3390/rs13224667
|
[14] |
Mitrovica J X, Gomez N, Morrow E, et al. On the robustness of predictions of sea level fingerprints[J]. Geophysical Journal International, 2011, 187(2): 729−742. doi: 10.1111/j.1365-246X.2011.05090.x
|
[15] |
Stepanov V N, Hughes C W. Parameterization of ocean self-attraction and loading in numerical models of the ocean circulation[J]. Journal of Geophysical Research: Oceans, 2004, 109(C3): C03037.
|
[16] |
Tamisiea M E, Hill E M, Ponte R M, et al. Impact of self-attraction and loading on the annual cycle in sea level[J]. Journal of Geophysical Research: Oceans, 2010, 115(C7): C07004.
|
[17] |
Richter K, Riva R E M, Drange H. Impact of self-attraction and loading effects induced by shelf mass loading on projected regional sea level rise[J]. Geophysical Research Letters, 2013, 40(6): 1144−1148. doi: 10.1002/grl.50265
|
[18] |
Milne G A, Mitrovica J X. Postglacial sea-level change on a rotating earth[J]. Geophysical Journal International, 1998, 133(1): 1−19. doi: 10.1046/j.1365-246X.1998.1331455.x
|
[19] |
Woodward R S. On the form and position of the sea level with special references to its dependence on superficial masses symmetrically disposed about a normal to the earth’s surface[R]. 1888. (查阅网上资料, 未找到本条文献出版信息, 请确认)
|
[20] |
Daly R A. Pleistocene changes of level[J]. American Journal of Science, 1925, s5-10(58): 281−313. doi: 10.2475/ajs.s5-10.58.281
|
[21] |
Bloom A L. Pleistocene shorelines: a new test of isostasy[J]. GSA Bulletin, 1967, 78(12): 1477−1494. doi: 10.1130/0016-7606(1967)78[1477:PSANTO]2.0.CO;2
|
[22] |
Walcott R I. Past sea levels, eustasy and deformation of the earth[J]. Quaternary Research, 1972, 2(1): 1−14. doi: 10.1016/0033-5894(72)90001-4
|
[23] |
Farrell W E, Clark J A. On postglacial sea level[J]. Geophysical Journal International, 1976, 46(3): 647−667.
|
[24] |
Milne G A, Mitrovica J X. Postglacial sea-level change on a rotating earth: first results from a gravitationally self-consistent sea-level equation[J]. Geophysical Journal International, 1996, 126(3): F13−F20. doi: 10.1111/j.1365-246X.1996.tb04691.x
|
[25] |
Tapley B D, Watkins M M, Flechtner F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change, 2019, 9(5): 358−369. doi: 10.1038/s41558-019-0456-2
|
[26] |
王林松, 陈超, 马险, 等. 冰盖消融的海平面指纹变化及其对GRACE监测结果的影响[J]. 地球物理学报, 2018, 61(7): 2679−2690.
Wang Linsong, Chen Chao, Ma Xian, et al. Sea level fingerprints of ice sheet melting and its impacts on monitoring results of GRACE[J]. Chinese Journal of Geophysics, 2018, 61(7): 2679−2690.
|
[27] |
Sun Jianwei, Wang Linsong, Peng Zhenran, et al. The sea level fingerprints of global terrestrial water storage changes detected by GRACE and GRACE-FO data[J]. Pure and Applied Geophysics, 2022, 179(9): 3493−3509. doi: 10.1007/s00024-022-03123-8
|
[28] |
Deng Shanshan, Jian Zhenlong, Liu Yuxin, et al. Tracking low-frequency variations in land-sea water mass redistribution during the GRACE/GRACE-FO era[J]. Remote Sensing, 2023, 15(17): 4248. doi: 10.3390/rs15174248
|
[29] |
Hsu C W, Velicogna I. Detection of sea level fingerprints derived from GRACE gravity data[J]. Geophysical Research Letters, 2017, 44(17): 8953−8961. doi: 10.1002/2017GL074070
|
[30] |
Adhikari S, Milne G A, Caron L, et al. Decadal to centennial timescale mantle viscosity inferred from modern crustal uplift rates in Greenland[J]. Geophysical Research Letters, 2021, 48(19): e2021GL094040. doi: 10.1029/2021GL094040
|
[31] |
Adhikari S, Ivins E R, Larour E. ISSM-SESAWv1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change[J]. Geoscientific Model Development, 2016, 9(3): 1087−1109. doi: 10.5194/gmd-9-1087-2016
|
[32] |
Sun Yu, Riva R, Ditmar P, et al. Using GRACE to explain variations in the earth's oblateness[J]. Geophysical Research Letters, 2019, 46(1): 158−168. doi: 10.1029/2018GL080607
|
[33] |
Lin Yucheng, Hibbert F D, Whitehouse P L, et al. A reconciled solution of meltwater pulse 1A sources using sea-level fingerprinting[J]. Nature Communications, 2021, 12(1): 2015. doi: 10.1038/s41467-021-21990-y
|
[34] |
Deng Shanshan, Liu Yuxin, Zhang Wenxi. A comprehensive evaluation of GRACE-like terrestrial water storage (TWS) reconstruction products at an interannual scale during 1981-2019[J]. Water Resources Research, 2023, 59(3): e2022WR034381. doi: 10.1029/2022WR034381
|
[35] |
Humphrey V, Gudmundsson L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century[J]. Earth System Science Data, 2019, 11(3): 1153−1170. doi: 10.5194/essd-11-1153-2019
|
[36] |
Li Fupeng, Kusche J, Rietbroek R, et al. Comparison of data-driven techniques to reconstruct (1992-2002) and predict (2017-2018) GRACE-like gridded total water storage changes using climate inputs[J]. Water Resources Research, 2020, 56(5): e2019WR026551. doi: 10.1029/2019WR026551
|
[37] |
Li Fupeng, Kusche J, Chao Nengfang, et al. Long-term (1979−present) total water storage anomalies over the global land derived by reconstructing GRACE data[J]. Geophysical Research Letters, 2021, 48(8): e2021GL093492. doi: 10.1029/2021GL093492
|
[38] |
邓珊珊, 刘苏峡, 莫兴国, 等. 全球陆地水储量异常时空分布重建数据集(1981-2020)[J]. 全球变化数据仓储电子杂志, 2023, 10(2). (查阅网上资料, 未找到本条文献页码信息, 请确认)
Deng Shanshan, Liu Suxia, Mo Xingguo, et al. Reconstruction dataset of spatial and temporal global terrestrial water storage anomalies (1981−2020)[J]. Digital Journal of Global Change Data Repository, 2023, 10(2). (查阅网上资料, 未找到本条文献英文翻译, 请确认)
|
[39] |
Lambeck K. The Earth’s Variable Rotation: Geophysical Causes and Consequences[M]. Cambridge: Cambridge University Press, 1980.
|
[40] |
Deng Shanshan, Liu Suxia, Mo Xingguo. Assessment and attribution of China’s droughts using an integrated drought index derived from GRACE and GRACE-FO data[J]. Journal of Hydrology, 2021, 603: 127170. doi: 10.1016/j.jhydrol.2021.127170
|
[41] |
林纾. 季以上尺度预报春季区域性沙尘暴过程的方法研究[J]. 中国沙漠, 2006, 26(3): 478−483.
Lin Shu. Method of forecasting regional sandstorm process in spring on seasonal scale[J]. Journal of Desert Research, 2006, 26(3): 478−483.
|
[42] |
Deng Shanshan, Liu Suxia, Mo X G, et al. Polar drift in the 1990s explained by terrestrial water storage changes[J]. Geophysical Research Letters, 2021, 48(7): e2020GL092114. (查阅网上资料, 未找到本条文献标黄作者全拼信息, 请确认)
|
[43] |
Deng Shanshan, Liu Suxia, Mo Xingguo. Assessment of three common methods for estimating terrestrial water storage change with three reanalysis datasets[J]. Journal of Climate, 2020, 33(2): 511−525. doi: 10.1175/JCLI-D-18-0637.1
|
[44] |
Scanlon B R, Zhang Zizhan, Save H, et al. Global evaluation of new GRACE mascon products for hydrologic applications[J]. Water Resources Research, 2016, 52(12): 9412−9429. doi: 10.1002/2016WR019494
|
[45] |
张岚, 孙文科. 重力卫星GRACE Mascon产品的应用研究进展与展望[J]. 地球与行星物理论评, 2022, 53(1): 35−52.
Zhang Lan, Sun Wenke. Progress and prospect of GRACE Mascon product and its application[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(1): 35−52.
|
[46] |
Watkins M M, Wiese D N, Yuan D N, et al. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2648−2671. doi: 10.1002/2014JB011547
|
[47] |
Wiese D N, Landerer F W, Watkins M M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution[J]. Water Resources Research, 2016, 52(9): 7490−7502. doi: 10.1002/2016WR019344
|
[48] |
Loomis B D, Luthcke S B, Sabaka T J. Regularization and error characterization of GRACE mascons[J]. Journal of Geodesy, 2019, 93(9): 1381−1398. doi: 10.1007/s00190-019-01252-y
|
[49] |
Save H, Bettadpur S, Tapley B D. High-resolution CSR GRACE RL05 mascons[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7547−7569. doi: 10.1002/2016JB013007
|
[50] |
Peltier W R, Argus D F, Drummond R. Comment on "an assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model" by Purcell et al[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 2019−2028. doi: 10.1002/2016JB013844
|
[51] |
Tapley B D, Bettadpur S, Watkins M, et al. The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31(9): L09607.
|
[52] |
ServiceC C C, StoreC D. Sea level gridded data from satellite observations for the global ocean from 1993 to present[DS]. 2018. (查阅网上资料, 未能确认文献类型, 请确认文献类型及格式是否正确)
|
[53] |
Chen Jianli, Tapley B, Tamisiea M E, et al. Error assessment of GRACE and GRACE Follow-On mass change[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB022124. doi: 10.1029/2021JB022124
|
[54] |
Ludwigsen C A, Andersen O B. Contributions to Arctic sea level from 2003 to 2015[J]. Advances in Space Research, 2021, 68(2): 703−710. doi: 10.1016/j.asr.2019.12.027
|
[55] |
Jin Shuanggen, Zou Fang. Re-estimation of glacier mass loss in Greenland from GRACE with correction of land-ocean leakage effects[J]. Global and Planetary Change, 2015, 135: 170−178. doi: 10.1016/j.gloplacha.2015.11.002
|
[56] |
WöppelmannG, Marcos M. Vertical land motion as a key to understanding sea level change and variability[J]. Reviews of Geophysics, 2016, 54(1): 64−92. doi: 10.1002/2015RG000502
|
[57] |
Frederikse T, Jevrejeva S, Riva R E M, et al. A consistent sea-level reconstruction and its budget on basin and global scales over 1958-2014[J]. Journal of Climate, 2018, 31(3): 1267−1280. doi: 10.1175/JCLI-D-17-0502.1
|