Citation: | Huang Xinyu,Wang Caixia,Wei Jilin, et al. An assessment of global ocean tide simulation by a coupled climate model FGOALS-g3[J]. Haiyang Xuebao,2024, 46(8):63–73 doi: 10.12284/hyxb2024091 |
[1] |
Huang Ruixin. Mixing and energetics of the oceanic thermohaline circulation[J]. Journal of Physical Oceanography, 1999, 29(4): 727−746. doi: 10.1175/1520-0485(1999)029<0727:MAEOTO>2.0.CO;2
|
[2] |
MacKinnon J. Mountain waves in the deep ocean[J]. Nature, 2013, 501(7467): 321−322. doi: 10.1038/501321a
|
[3] |
Munk W, Wunsch C. Abyssal recipes II: energetics of tidal and wind mixing[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(12): 1977−2010. doi: 10.1016/S0967-0637(98)00070-3
|
[4] |
Wang Xiaowei, Liu Zhiyu, Peng Shiqiu. Impact of tidal mixing on water mass transformation and circulation in the South China Sea[J]. Journal of Physical Oceanography, 2017, 47(2): 419−432. doi: 10.1175/JPO-D-16-0171.1
|
[5] |
Wunsch C, Ferrari R. Vertical mixing, energy, and the general circulation of the oceans[J]. Annual Review of Fluid Mechanics, 2004, 36: 281−314. doi: 10.1146/annurev.fluid.36.050802.122121
|
[6] |
EgbertG D, Gary R D. Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry[J]. Geophysical Research Letters, 2003, 30(17): 1907.
|
[7] |
Jayne S R, St. Laurent L C. Parameterizing tidal dissipation over rough topography[J]. Geophysical Research Letters, 2001, 28(5): 811−814. doi: 10.1029/2000GL012044
|
[8] |
Bryan K. A numerical method for the study of the circulation of the world ocean[J]. Journal of Computational Physics, 1997, 135(2): 154−169. doi: 10.1006/jcph.1997.5699
|
[9] |
Cox M D. A primitive equation 3-dimensional model of the ocean[R]. Princeton: Princeton University, 1984.
|
[10] |
Killworth P D, Webb D J, Stainforth D, et al. The development of a free-surface bryan-cox-semtner ocean model[J]. Journal of Physical Oceanography, 1991, 21(9): 1333−1348. doi: 10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2
|
[11] |
St. Laurent L C, Simmons H L, Jayne S R. Estimating tidally driven mixing in the deep ocean[J]. Geophysical Research Letters, 2002, 29(23): 2106.
|
[12] |
Simmons H L, Jayne S R, St. Laurent L C, et al. Tidally driven mixing in a numerical model of the ocean general circulation[J]. Ocean Modelling, 2004, 6(3/4): 245−263.
|
[13] |
Yu Yi, Liu Hailong, Lan Jian. The influence of explicit tidal forcing in a climate ocean circulation model[J]. Acta Oceanologica Sinica, 2016, 35(9): 42−50. doi: 10.1007/s13131-016-0931-9
|
[14] |
Saenko O A, Merryfield W J. On the effect of topographically enhanced mixing on the global ocean circulation[J]. Journal of Physical Oceanography, 2005, 35(5): 826−834. doi: 10.1175/JPO2722.1
|
[15] |
Jayne S R. The impact of abyssal mixing parameterizations in an ocean general circulation model[J]. Journal of Physical Oceanography, 2009, 39(7): 1756−1775. doi: 10.1175/2009JPO4085.1
|
[16] |
Melet A, Hallberg R, Legg S, et al. Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing[J]. Journal of Physical Oceanography, 2013, 43(3): 602−615. doi: 10.1175/JPO-D-12-055.1
|
[17] |
Song Pengyang, Sidorenko D, Scholz P, et al. The tidal effects in the Finite-volumE Sea ice–Ocean Model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing[J]. Geoscientific Model Development, 2023, 16(1): 383−405. doi: 10.5194/gmd-16-383-2023
|
[18] |
Thomas M, Sündermann J, Maier-Reimer E. Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation[J]. Geophysical Research Letters, 2001, 28(12): 2457−2460. doi: 10.1029/2000GL012234
|
[19] |
Schiller A. Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian through flow region[J]. Ocean Modelling, 2004, 6(1): 31−49. doi: 10.1016/S1463-5003(02)00057-4
|
[20] |
Schiller A, Fiedler R. Explicit tidal forcing in an ocean general circulation model[J]. Geophysical Research Letters, 2007, 34(3): L03611.
|
[21] |
Müller M, Haak H, Jungclaus J H, et al. The effect of ocean tides on a climate model simulation[J]. Ocean Modelling, 2010, 35(4): 304−313. doi: 10.1016/j.ocemod.2010.09.001
|
[22] |
Jin Jiangbo, Guo Run, Zhang Minghua, et al. Formulation of a new explicit tidal scheme in revised LICOM2.0[J]. Geoscientific Model Development, 2022, 15(10): 4259−4273. doi: 10.5194/gmd-15-4259-2022
|
[23] |
Arbic B K, Wallcraft A J, Metzger E J. Concurrent simulation of the eddying general circulation and tides in a global ocean model[J]. Ocean Modelling, 2010, 32(3/4): 175−187.
|
[24] |
Shriver J F, Arbic B K, Richman J G, et al. An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model[J]. Journal of Geophysical Research: Oceans, 2012, 117(C10): C10024.
|
[25] |
Müller M, Cherniawsky J Y, Foreman M G G, et al. Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling[J]. Geophysical Research Letters, 2012, 39(19): L19607.
|
[26] |
Müller M. On the space-and time-dependence of barotropic-to-baroclinic tidal energy conversion[J]. Ocean Modelling, 2013, 72: 242−252. doi: 10.1016/j.ocemod.2013.09.007
|
[27] |
Li Lijuan, Yu Yongqiang, Tang Yanli, et al. The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9): e2019MS002012. doi: 10.1029/2019MS002012
|
[28] |
Li Lijuan, Dong Li, Xie Jinbo, et al. The GAMIL3: model description and evaluation[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15): e2020JD032574. doi: 10.1029/2020JD032574
|
[29] |
Xie Zhenghui, Wang Longhuan, Wang Yan, et al. Land surface model CAS-LSM: model description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12): e2020MS002339. doi: 10.1029/2020MS002339
|
[30] |
Lin Pengfei, Yu Zhipeng, Liu Hailong, et al. LICOM model datasets for the CMIP6 ocean model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(3): 239−249. doi: 10.1007/s00376-019-9208-5
|
[31] |
Craig A P, Vertenstein M, Jacob R. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1[J]. The International Journal of High Performance Computing Applications, 2012, 26(1): 31−42. doi: 10.1177/1094342011428141
|
[32] |
Wang Yaqi, Yu Zipeng, Lin Pengfei, et al. FGOALS-g3 model datasets for CMIP6 flux-anomaly-forced model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1093−1101. doi: 10.1007/s00376-020-2045-8
|
[33] |
Lin Pengfei, Zhao Bowen, Wei Jilin, et al. The super-large ensemble experiments of CAS FGOALS-g3[J]. Advances in Atmospheric Sciences, 2022, 39(10): 1746−1765. doi: 10.1007/s00376-022-1439-1
|
[34] |
Zheng Weipeng, Yu Yongqiang, Luan Yihua, et al. CAS-FGOALS datasets for the two interglacial epochs of the holocene and the last interglacial in PMIP4[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1034−1044. doi: 10.1007/s00376-020-9290-8
|
[35] |
Wei Jilin, Liu Hailong, Zhao Yan, et al. Simulation of the climate and ocean circulations in the Middle Miocene Climate Optimum by a coupled model FGOALS-g3[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617: 111509. doi: 10.1016/j.palaeo.2023.111509
|
[36] |
Pu Ye, Liu Hongbo, Yan Ruojing, et al. CAS FGOALS-g3 model datasets for the CMIP6 scenario model intercomparison project (ScenarioMIP)[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1081−1092. doi: 10.1007/s00376-020-2032-0
|
[37] |
Griffies S M, Biastoch A, Böning C, et al. Coordinated ocean-ice reference experiments (COREs)[J]. Ocean Modelling, 2009, 26(1/2): 1−46.
|
[38] |
Hendershott M C. The effects of solid earth deformation on global ocean tides[J]. Geophysical Journal International, 1972, 29(4): 389−402. doi: 10.1111/j.1365-246X.1972.tb06167.x
|
[39] |
Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
|
[40] |
Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183−204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
|
[41] |
Lyard F H, Allain D J, Cancet M, et al. FES2014 global ocean tide atlas: design and performance[J]. Ocean Science, 2021, 17(3): 615−649. doi: 10.5194/os-17-615-2021
|
[42] |
Shum C K, Woodworth P L, Andersen O B, et al. Accuracy assessment of recent ocean tide models[J]. Journal of Geophysical Research: Oceans, 1997, 102(C11): 25173−25194. doi: 10.1029/97JC00445
|
[43] |
von Storch JS, Hertwig E, Lüschow V, et al. Open-ocean tides simulated by ICON-O, version icon-2.6.6[J]. Geoscientific Model Development, 2023, 16(17): 5179−5196. doi: 10.5194/gmd-16-5179-2023
|
[44] |
Arbic B K. Incorporating tides and internal gravity waves within global ocean general circulation models: a review[J]. Progress in Oceanography, 2022, 206: 102824. doi: 10.1016/j.pocean.2022.102824
|