Citation: | Cui Yudong,Liu Honghuan,Chen Jinxue. Isolation of a phosphonate-degrading symbiotic bacterium from Prorocentrum donghaiense and its promoting effect on algal growth[J]. Haiyang Xuebao,2024, 46(9):38–51 doi: 10.12284/hyxb2024090 |
[1] |
Tyrrell T. The relative influences of nitrogen and phosphorus on oceanic primary production[J]. Nature, 1999, 400(6744): 525−531. doi: 10.1038/22941
|
[2] |
Karl D M. Microbially mediated transformations of phosphorus in the sea: new views of an old cycle[J]. Annual Review of Marine Science, 2014, 6: 279−337. doi: 10.1146/annurev-marine-010213-135046
|
[3] |
Lin Senjie, Litaker R W, Sunda W G. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton[J]. Journal of Phycology, 2016, 52(1): 10−36. doi: 10.1111/jpy.12365
|
[4] |
Kolowith L C, Ingall E D, Benner R. Composition and cycling of marine organic phosphorus[J]. Limnology and Oceanography, 2001, 46(2): 309−320. doi: 10.4319/lo.2001.46.2.0309
|
[5] |
Lin Xin, Wang Lu, Shi Xinguo, et al. Rapidly diverging evolution of an atypical alkaline phosphatase (PhoA(aty)) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases[J]. Frontiers in Microbiology, 2015, 6: 868.
|
[6] |
McGrath J W, Chin J P, Quinn J P. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules[J]. Nature Reviews Microbiology, 2013, 11(6): 412−419. doi: 10.1038/nrmicro3011
|
[7] |
Gomez-Garcia M R, Davison M, Blain-Hartnung M, et al. Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats[J]. The ISME Journal, 2011, 5(1): 141−149. doi: 10.1038/ismej.2010.96
|
[8] |
Dyhrman S T, Chappell P D, Haley S T, et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium[J]. Nature, 2006, 439(7072): 68−71. doi: 10.1038/nature04203
|
[9] |
Whitney L P, Lomas M W. Phosphonate utilization by eukaryotic phytoplankton[J]. Limnology and Oceanography Letters, 2019, 4(1): 18−24. doi: 10.1002/lol2.10100
|
[10] |
Wang Cong, Lin Xin, Li Ling, et al. Differential growth responses of marine phytoplankton to herbicide glyphosate[J]. PLoS One, 2016, 11(3): e0151633. doi: 10.1371/journal.pone.0151633
|
[11] |
Cui Yudong, Lin Xin, Zhang Huan, et al. PhnW-PhnX pathway in dinoflagellates not functional to utilize extracellular phosphonates[J]. Frontiers in Marine Science, 2016, 2: 120.
|
[12] |
Yu Xiaomin, Doroghazi J R, Janga S C, et al. Diversity and abundance of phosphonate biosynthetic genes in nature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): 20759−20764.
|
[13] |
Dyhrman S T, Benitez-Nelson C R, Orchard E D, et al. A microbial source of phosphonates in oligotrophic marine systems[J]. Nature Geoscience, 2009, 2(10): 696−699. doi: 10.1038/ngeo639
|
[14] |
Quin L D, Quin G S. Screening for carbon-bound phosphorus in marine animals by high-resolution 31P-NMR spectroscopy: coastal and hydrothermal vent invertebrates[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2001, 128(1): 173−185. doi: 10.1016/S1096-4959(00)00310-9
|
[15] |
Wang Cong, Lin Xin, Li Ling, et al. Glyphosate shapes a dinoflagellate-associated bacterial community while supporting algal growth as sole phosphorus source[J]. Frontiers in Microbiology, 2017, 8: 2530. doi: 10.3389/fmicb.2017.02530
|
[16] |
Quinn J P, Kulakova A N, Cooley N A, et al. New ways to break an old bond: the bacterial carbon–phosphorus hydrolases and their role in biogeochemical phosphorus cycling[J]. Environmental Microbiology, 2007, 9(10): 2392−2400. doi: 10.1111/j.1462-2920.2007.01397.x
|
[17] |
Villarreal-Chiu JF, Quinn JP, McGrath JW. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment[J]. Frontiers in Microbiology, 2012, 3: 19.
|
[18] |
Richardson B, Corcoran A A. Use of dissolved inorganic and organic phosphorus by axenic and nonaxenic clones of Karenia brevis and Karenia mikimotoi[J]. Harmful Algae, 2015, 48: 30−36. doi: 10.1016/j.hal.2015.06.005
|
[19] |
Shi Xinguo, Lin Xin, Li Ling, et al. Transcriptomic and microRNAomic profiling reveals multi-faceted mechanisms to cope with phosphate stress in a dinoflagellate[J]. The ISME Journal, 2017, 11(10): 2209−2218. doi: 10.1038/ismej.2017.81
|
[20] |
Shi Xinguo, Liu Lenian, Li Yue, et al. Isolation of an algicidal bacterium and its effects against the harmful-algal- bloom dinoflagellate Prorocentrum donghaiense (Dinophyceae)[J]. Harmful Algae, 2018, 80: 72−79. doi: 10.1016/j.hal.2018.09.003
|
[21] |
Parkhill J P, Maillet G, Cullen J J. Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress[J]. Journal of Phycology, 2001, 37(4): 517−529. doi: 10.1046/j.1529-8817.2001.037004517.x
|
[22] |
Baker N R. Chlorophyll fluorescence: a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology, 2008, 59: 89−113. doi: 10.1146/annurev.arplant.59.032607.092759
|
[23] |
Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725−2729. doi: 10.1093/molbev/mst197
|
[24] |
Overbeek R, Olson R, Pusch G D, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST)[J]. Nucleic Acids Research, 2014, 42(D1): D206−D214. doi: 10.1093/nar/gkt1226
|
[25] |
Chun J, Oren A, Ventosa A, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(1): 461−466. doi: 10.1099/ijsem.0.002516
|
[26] |
Kim M, Oh H S, Park S C, et al. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 346-351.
|
[27] |
Cui Yudong, Zhang Huan, Lin Senjie. Enhancement of non-photochemical quenching as an adaptive strategy under phosphorus deprivation in the dinoflagellate Karlodinium veneficum[J]. Frontiers in Microbiology, 2017, 8: 404.
|
[28] |
Oren A, Garrity G M. Valid publication of the names of forty-two phyla of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2021, 71(10): 005056.
|
[29] |
唐莹莹, 乔玉宝, 蒋志伟, 等. 东海产麻痹性贝毒链状亚历山大藻共附生菌群多样性研究[J]. 海洋渔业, 2018, 40(6): 720−727. doi: 10.3969/j.issn.1004-2490.2018.06.009
Tang Yingying, Qiao Yubao, Jiang Zhiwei, et al. Biodiversity study of the bacterial community associated with toxic marine dinoflagellate Alexandrium catenella LZ1706[J]. Marine Fisheries, 2018, 40(6): 720−727. doi: 10.3969/j.issn.1004-2490.2018.06.009
|
[30] |
龚诗雁, 屠燕萍, 谢志浩. 4株米氏凯伦藻(Karenia mikimotoi)藻际异养细菌的分离鉴定[J]. 海洋与湖沼, 2014, 45(5): 1099−1104. doi: 10.11693/hyhz20140600174
Gong Shiyan, Tu Yanping, Xie Zhihao. Molecular identification of four strains of heterotrophic bacteria isolated from Karenia mikimotoi[J]. Oceanologia et Limnologia Sinica, 2014, 45(5): 1099−1104. doi: 10.11693/hyhz20140600174
|
[31] |
李月月, 田晓清, 韩清华, 等. 利玛原甲藻PL11共附生菌多样性研究[J]. 海洋渔业, 2020, 42(1): 73−81. doi: 10.3969/j.issn.1004-2490.2020.01.008
Li Yueyue, Tian Xiaoqing, Han Qinghua, et al. Biodiversity of symbiotic and epiphytic bacteria of Prorocentrum lima PL11[J]. Marine Fisheries, 2020, 42(1): 73−81. doi: 10.3969/j.issn.1004-2490.2020.01.008
|
[32] |
Wirth J S, Whitman W B. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(7): 2393−2411. doi: 10.1099/ijsem.0.002833
|
[33] |
曹延群, 李赟, 潘克厚, 等. 三角褐指藻藻液细菌的分离鉴定及其对藻细胞生长的影响[J]. 海洋湖沼通报, 2019(1): 107−112.
Cao Yanqun, Li Yun, Pan Kehou, et al. Isolation and identification of the bacteria from Phaeodactylum tricornutum and their effects on the growth of algal cells[J]. Transactions of Oceanology and Limnology, 2019(1): 107−112.
|
[34] |
Johansson O N, Pinder M I M, Ohlsson F, et al. Friends with benefits: exploring the phycosphere of the marine diatom Skeletonema marinoi[J]. Frontiers in Microbiology, 2019, 10: 1828. doi: 10.3389/fmicb.2019.01828
|
[35] |
Buchan A, LeCleir G R, Gulvik C A, et al. Master recyclers: features and functions of bacteria associated with phytoplankton blooms[J]. Nature Reviews Microbiology, 2014, 12(10): 686−698. doi: 10.1038/nrmicro3326
|
[36] |
刘兵, 李宇, 叶倩, 等. 链状亚历山大藻共附生细菌多样性[J]. 生态学杂志, 2009, 28(5): 889−894.
Liu Bing, Li Yu, Ye Qian, et al. Phylogenetic diversity of bacteria associated with dinoflagellate Alexandrium catenella[J]. Chinese Journal of Ecology, 2009, 28(5): 889−894.
|
[37] |
杨小茹, 苏建强, 郑小伟, 等. 基于分子技术的1株产毒藻藻际细菌多样性分析[J]. 环境科学, 2009, 30(1): 271−279. doi: 10.3321/j.issn:0250-3301.2009.01.046
Yang Xiaoru, Su Jianqiang, Zheng Xiaowei, et al. 16S rDNA clone library analysis of microbial diversity associated with the PSP-producing dinoflagellate Alexandrium tamarense[J]. Environmental Science, 2009, 30(1): 271−279. doi: 10.3321/j.issn:0250-3301.2009.01.046
|
[38] |
王鹏斌, 戴鑫烽, 陆斗定. 米氏凯伦藻(Km02)共培养细菌群落的研究[J]. 海洋与湖沼, 2019, 50(3): 644−651. doi: 10.11693/hyhz20180700179
Wang Pengbin, Dai Xinfeng, Lu Douding. Co-cultured bacterial community of Karenia mikimotoi (Km02)[J]. Oceanologia et Limnologia Sinica, 2019, 50(3): 644−651. doi: 10.11693/hyhz20180700179
|
[39] |
Wang Yuming, Zhou Panpan, Zhou Weicheng, et al. Network analysis indicates microbial assemblage differences in life stages of Cladophora[J]. Applied and Environmental Microbiology, 2023, 89(3): e0211222. doi: 10.1128/aem.02112-22
|
[40] |
Oppong-Danquah E, Blümel M, Tasdemir D. Metabolomics and microbiomics insights into differential surface fouling of three macroalgal species of Fucus (Fucales, Phaeophyceae) that co-exist in the German Baltic Sea[J]. Mar Drugs, 2023, 21(11): 595. doi: 10.3390/md21110595
|
[41] |
李斯远, 何治江, 吕泓玥, 等. 厚壳贻贝(Mytilus coruscus)养殖海域与天然生长海域的微生物群落比较研究[J]. 海洋与湖沼, 2021, 52(1): 196−205. doi: 10.11693/hyhz20200700217
Li Siyuan, He Zhijiang, Lv Hongyue, et al. Comparative study on microbial community in mussel Mytilus coruscus body and seawater of its natural and cultural sea area in Zhoushan, Zhejiang[J]. Oceanologia et Limnologia Sinica, 2021, 52(1): 196−205. doi: 10.11693/hyhz20200700217
|
[42] |
Du Zongjun, Zhang Wanyi, Xia Hongjie, et al. Isolation and diversity analysis of heterotrophic bacteria associated with sea anemones[J]. Acta Oceanologica Sinica, 2010, 29(2): 62−69. doi: 10.1007/s13131-010-0023-1
|
[43] |
Huo Lixin, Ma Anran, Liu Hong, et al. Diversity and ecological assembly process of aerobic anoxygenic phototrophic bacteria in a low irradiation area, three gorges reservoir[J]. Journal of Environmental Sciences, 2024, 143: 116−125. doi: 10.1016/j.jes.2023.08.015
|
[44] |
Feng Xiaoyuan, Xing Peng. Genomics of Yoonia sp. isolates (family Roseobacteraceae) from Lake Zhangnai on the Tibetan Plateau[J]. Microorganisms, 2023, 11(11): 2817. doi: 10.3390/microorganisms11112817
|
[45] |
Piontek J, Meeske C, Hassenrück C, et al. Organic matter availability drives the spatial variation in the community composition and activity of Antarctic marine bacterioplankton[J]. Environmental Microbiology, 2022, 24(9): 4030−4048. doi: 10.1111/1462-2920.16087
|
[46] |
Cruz-López R, Maske H. The vitamin B1 and B12 required by the marine dinoflagellate Lingulodinium polyedrum can be provided by its associated bacterial community in culture[J]. Frontiers in Microbiology, 2016, 7: 560.
|
[47] |
Orchard E D, Benitez-Nelson C R, Pellechia P J, et al. Polyphosphate in Trichodesmium from the low‐phosphorus Sargasso Sea[J]. Limnology and Oceanography, 2010, 55(5): 2161−2169. doi: 10.4319/lo.2010.55.5.2161
|
[48] |
Dyhrman S T, Ammerman J W, Van Mooy B A S. Microbes and the marine phosphorus cycle[J]. Oceanography, 2007, 20(2): 110−116. doi: 10.5670/oceanog.2007.54
|
[49] |
Metcalf W W, Wanner B L. Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli[J]. Gene, 1993, 129(1): 27−32. doi: 10.1016/0378-1119(93)90692-V
|
[50] |
Hove-Jensen B, Rosenkrantz T J, Zechel D L, et al. Accumulation of intermediates of the carbon-phosphorus lyase pathway for phosphonate degradation in phn mutants of Escherichia coli[J]. Journal of Bacteriology, 2010, 192(1): 370−374. doi: 10.1128/JB.01131-09
|
[51] |
White A K, Metcalf W W. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite[J]. Journal of Bacteriology, 2004, 186(14): 4730−4739. doi: 10.1128/JB.186.14.4730-4739.2004
|
[52] |
Errey J C, Blanchard J S. Functional annotation and kinetic characterization of PhnO from Salmonella enterica[J]. Biochemistry, 2006, 45(9): 3033−3039. doi: 10.1021/bi052297p
|
[53] |
Amin S A, Hmelo L R, Van Tol H M, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria[J]. Nature, 2015, 522(7554): 98−101. doi: 10.1038/nature14488
|
[54] |
González J M, Simó R, Massana R, et al. Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom[J]. Applied and Environmental Microbiology, 2000, 66(10): 4237−4246. doi: 10.1128/AEM.66.10.4237-4246.2000
|
[55] |
Gong Weida, Browne J, Hall N, et al. Molecular insights into a dinoflagellate bloom[J]. The ISME Journal, 2017, 11(2): 439−452. doi: 10.1038/ismej.2016.129
|
[56] |
史荣君, 黄洪辉, 齐占会, 等. 一株溶藻细菌对海洋原甲藻的溶藻效应[J]. 生态学报, 2012, 32(16): 4993−5001. doi: 10.5846/stxb201202140194
Shi Rongjun, Huang Honghui, Qi Zhanhui, et al. Algicidal activity against Prorocentrum micans by a marine bacterium isolated from a HABs area, South China[J]. Acta Ecologica Sinica, 2012, 32(16): 4993−5001. doi: 10.5846/stxb201202140194
|
[57] |
Janßen R, Skeff W, Werner J, et al. A glyphosate pulse to brackish long-term microcosms has a greater impact on the microbial diversity and abundance of planktonic than of biofilm assemblages[J]. Frontiers in Marine Science, 2019, 6: 758. doi: 10.3389/fmars.2019.00758
|
[58] |
Kononova S V, Nesmeyanova M A. Phosphonates and their degradation by microorganisms[J]. Biochemistry (Moscow), 2002, 67(2): 184−195. doi: 10.1023/A:1014409929875
|
[59] |
Lomas M W, Burke A L, Lomas D A, et al. Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP)[J]. Biogeosciences, 2010, 7(2): 695−710. doi: 10.5194/bg-7-695-2010
|
[60] |
Xiao Wupeng, Liu Xin, Irwin A J, et al. Warming and eutrophication combine to restructure diatoms and dinoflagellates[J]. Water Research, 2018, 128: 206−216. doi: 10.1016/j.watres.2017.10.051
|
[61] |
王金辉, 黄秀清. 具齿原甲藻的生态特征及赤潮成因浅析[J]. 应用生态学报, 2003, 14(7): 1065−1069. doi: 10.3321/j.issn:1001-9332.2003.07.007
Wang Jinhui, Huang Xiuqing. Ecological characteristics of Prorocentrum dentatum and the cause of harmful algal bloom formation in China Sea[J]. Chinese Journal of Applied Ecology, 2003, 14(7): 1065−1069. doi: 10.3321/j.issn:1001-9332.2003.07.007
|
[62] |
Zhou Jin, Richlen M L, Sehein T R, et al. Microbial community structure and associations during a marine dinoflagellate bloom[J]. Frontiers in Microbiology, 2018, 9: 1201. doi: 10.3389/fmicb.2018.01201
|