Citation: | Qin Zhipeng,Chen Yongping,Pan Yi, et al. Research on typhoon wave height prediction method based on BO-LSTM neural network model[J]. Haiyang Xuebao,2024, 46(10):1–10 doi: 10.12284/hyxb2024089 |
[1] |
陶爱峰, 沈至淳, 李硕, 等. 中国灾害性海浪研究进展[J]. 科技导报, 2018, 36(14): 26−34.
Tao Aifeng, Shen Zhichun, Li Shuo, et al. Research progrecs for disastrous waves in China[J]. Science & Technology Review, 2018, 36(14): 26−34.
|
[2] |
屈远, 高志一, 蔡靖泽, 等. 数值模型和智能模型的海浪预报能力比较[J]. 海洋预报, 2022, 39(5): 17−26. doi: 10.11737/j.issn.1003-0239.2022.05.003
Qu Yuan, Gao Zhiyi, Cai Jingze, et al. Comparison of wave prediction ability between numerical model and AI model[J]. Marine Forecasts, 2022, 39(5): 17−26. doi: 10.11737/j.issn.1003-0239.2022.05.003
|
[3] |
Wilson B W. Numerical prediction of ocean waves in the North Atlantic for December, 1959[J]. Deutsche Hydrografische Zeitschrift, 1965, 18(3): 114−130. doi: 10.1007/BF02333333
|
[4] |
许富祥, 许林之. 海浪预报方法综述(二)[J]. 海洋预报, 1989, 6(4): 50−58.
Xu Fuxiang, Xu Linzhi. Overview of wave forecasting methods (Ⅱ)[J]. Marine Forecasts, 1989, 6(4): 50−58.
|
[5] |
刘凡, 陆小敏, 徐丹, 等. 海浪预报方法研究进展[J]. 河海大学学报(自然科学版), 2021, 49(5): 387−393.
Liu Fan, Lu Xiaomin, Xu Dan, et al. Research progress of ocean waves forecasting method[J]. Journal of Hohai University (Natural Sciences), 2021, 49(5): 387−393.
|
[6] |
Fan Shuntao, Xiao Nianhao, Dong Sheng. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205: 107298. doi: 10.1016/j.oceaneng.2020.107298
|
[7] |
Zhou Shuyi, Xie Wenhong, Lu Yuxiang, et al. ConvLSTM-based wave forecasts in the South and East China Seas[J]. Frontiers in Marine Science, 2021, 8: 680079. doi: 10.3389/fmars.2021.680079
|
[8] |
Gao Zhiyi, Liu Xing, Yv Fujiang, et al. Learning wave fields evolution in North West Pacific with deep neural networks[J]. Applied Ocean Research, 2023, 130: 103393. doi: 10.1016/j.apor.2022.103393
|
[9] |
Pan Yi, Chen Yongping, Li Jiangxia, et al. Improvement of wind field hindcasts for tropical cyclones[J]. Water Science and Engineering, 2016, 9(1): 58−66. doi: 10.1016/j.wse.2016.02.002
|
[10] |
Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
|
[11] |
Lu Xiaoqin, Yu Hui, Ying Ming, et al. Western North Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690−699. doi: 10.1007/s00376-020-0211-7
|
[12] |
Nederhoff K, Hoek J, Leijnse T, et al. Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations[J]. Natural Hazards and Earth System Sciences, 2021, 21(3): 861−878. doi: 10.5194/nhess-21-861-2021
|
[13] |
Booij N, Ris C R, Holthuijsen H L. A third-generation wave model for coastal regions: 1. Model description and validation[J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7649−7666. doi: 10.1029/98JC02622
|
[14] |
Holland G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8): 1212−1218. doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
|
[15] |
杨万康, 尹宝树, 伊小飞, 等. 基于Holland风场的台风浪数值计算[J]. 水利水运工程学报, 2017(4): 28−34.
Yang Wankang, Yin Baoshu, Yi Xiaofei, et al. Numerical calculation and research of typhoon waves based on Holland wind field[J]. Hydro-Science and Engineering, 2017(4): 28−34.
|
[16] |
马秀玲, 魏来. 基于Holland台风模型及三重嵌套海浪模式的台风浪数值模拟研究[J]. 海洋与湖沼, 2024, 55(1): 51−64.
Ma Xiuling, Wei Lai. Numerical simulation of typhoon waves based on the Holland typhoon model and triple nested wave pattern[J]. Oceanologia et Limnologia Sinica, 2024, 55(1): 51−64.
|
[17] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
|
[18] |
李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述[J]. 计算机科学, 2022, 49(S1): 86−92. doi: 10.11896/jsjkx.210300208
Li Yaru, Zhang Yulai, Wang Jiachen. Survey on Bayesian optimization methods for hyper-parameter tuning[J]. Computer Science, 2022, 49(S1): 86−92. doi: 10.11896/jsjkx.210300208
|
[19] |
Shahriari B, Swersky K, Wang Ziyu, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148−175. doi: 10.1109/JPROC.2015.2494218
|
[20] |
Georgiou P N. Design wind speeds in tropical cyclone-prone regions[D]. London, Canada: Western University, 1986.
|
[21] |
Vickery P J, Wadhera D, Twisdale L A, et al. U. S. Hurricane wind speed risk and uncertainty[J]. Journal of Structural Engineering, 2009, 135(3): 301−320. doi: 10.1061/(ASCE)0733-9445(2009)135:3(301)
|
[22] |
郑桥. 浙江近海典型台风浪和寒潮浪的精细化数值模拟[D]. 杭州: 浙江大学, 2019.
Zheng Qiao. Numerical simulation of typical typhoon waves and cold waves in Zhejiang adjacent seas with refined grids[D]. Hangzhou: Zhejiang University, 2019.
|
[23] |
季余, 朱业, 李莉, 等. 浙江沿海台风浪模式的参数适应性研究[J]. 海洋预报, 2023, 40(2): 22−31. doi: 10.11737/j.issn.1003-0239.2023.02.003
Ji Yu, Zhu Ye, Li Li, et al. Study on the parameters adaptability of typhoon wave model in Zhejiang coastal area[J]. Marine Forecasts, 2023, 40(2): 22−31. doi: 10.11737/j.issn.1003-0239.2023.02.003
|
[24] |
邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020.
Qiu Xipeng. Neural Networks and Deep Learning[M]. Beijing: China Machine Press, 2020.
|