Citation: | Shen Xiaoyi,Ke Changqing,Li Haili. The estimation of Antarctic sea ice thickness from multi-source satellite radar altimeters[J]. Haiyang Xuebao,2024, 46(8):108–120 doi: 10.12284/hyxb2024087 |
[1] |
Parkinson C L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2019, 116(29): 14414−14423. doi: 10.1073/pnas.1906556116
|
[2] |
杨颖玥, 刘海龙. 南极海冰快速下降历史事件的时空特征分析[J]. 海洋与湖沼, 2023, 54(6): 1564−1572.
Yang Yingyue, Liu Hailong. Temporal and spatial characteristics of historical events of rapid decline of Antarctic sea ice[J]. Oceanologia et Limnlolgia Sinica, 2023, 54(6): 1564−1572.
|
[3] |
蔡祎, 艾松涛. 基于Argo浮标的南极海冰范围变化分析[J]. 海洋通报, 2021, 40(5): 492−501.
Cai Yi, Ai Songtao. Analysis of Antarctic sea ice extent variation based on Argo floats[J]. Marine Science Bulletin, 2021, 40(5): 492−501.
|
[4] |
李双林, 韩哲, 刘娜, 等. 2016年南极海冰破纪录减少及其成因的研究综述[J]. 海洋学报, 2021, 43(7): 1−10.
Li Shuanglin, Han Zhe, Liu Na, et al. A review of the researches on the record low Antarctic sea ice in 2016 and its formation mechanisms[J]. Haiyang Xuebao, 2021, 43(7): 1−10.
|
[5] |
刘玥, 庞小平, 赵羲, 等. 1979–2018年南极海冰边缘区范围时空变化研究[J]. 极地研究, 2021, 33(4): 508−517.
Liu Yue, Pang Xiaoping, Zhao Xi, et al. Analysis of temporal and spatial changes in the extent of the Antarctic marginal ice zone from 1979 to 2018[J]. Chinese Journal of Polar Research, 2021, 33(4): 508−517.
|
[6] |
柯长青, 金鑫, 沈校熠, 等. 南北极海冰变化及其影响因素的对比分析[J]. 极地研究, 2020, 32(1): 1−12.
Ke Changqing, Jin Xin, Shen Xiaoyi, et al. Comparison of Antarctic and Arctic sea ice variations and their impact factors[J]. Chinese Journal of Polar Research, 2020, 32(1): 1−12.
|
[7] |
刘森, 邹斌, 石立坚, 等. 基于FY-3C微波辐射计数据的极区海冰密集度反演方法研究[J]. 海洋学报, 2020, 42(1): 113−122. doi: 10.3969/j.issn.0253-4193.2020.01.012
Liu Sen, Zou Bin, Shi Lijian, et al. Polar sea ice concentration retrieval based on FY-3C microwave radiation imager data[J]. Haiyang Xuebao, 2020, 42(1): 113−122. doi: 10.3969/j.issn.0253-4193.2020.01.012
|
[8] |
张雷, 徐宾, 师春香, 等. 基于卫星气候资料的1989-2015年南北极海冰面积变化分析[J]. 冰川冻土, 2017, 39(6): 1163−1171.
Zhang Lei, Xu Bin, Shi Chunxiang, et al. Analysis of sea ice area change in the Arctic and Antarctic based on the satellite climate data during1989-2015[J]. Journal of Glaciology and Geocryology, 2017, 39(6): 1163−1171.
|
[9] |
Willmes S, Nicolaus M, Haas C. The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: a model study[J]. The Cryosphere, 2014, 8(3): 891−904. doi: 10.5194/tc-8-891-2014
|
[10] |
Ozsoy-Cicek B, Ackley S, Xie Hongjie, et al. Sea ice thickness retrieval algorithms based on in situ surface elevation and thickness values for application to altimetry[J]. Journal of Geophysical Research: Oceans, 2013, 118(8): 3807−3822. doi: 10.1002/jgrc.20252
|
[11] |
Worby A P, Geiger C A, Paget M J, et al. Thickness distribution of Antarctic sea ice[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05S92.
|
[12] |
唐述林, 李宁. 基于走航观测的夏季南极海冰分布特征分析[J]. 冰川冻土, 2008, 30(2): 211−217.
Tang Shulin, Li Ning. Analysis of the signature of summer Antarctic sea ice distribution by ship-based ice observation[J]. Journal of Glaciology and Geocryology, 2008, 30(2): 211−217.
|
[13] |
Fichefet T, Goosse H, Morales Maqueda M A. A hindcast simulation of Arctic and Antarctic sea ice variability, 1955–2001[J]. Polar Research, 2003, 22(1): 91−98.
|
[14] |
Fichefet T, Tartinville B, Goosse H. Antarctic sea ice variability during 1958–1999: a simulation with a global ice-ocean model[J]. Journal of Geophysical Research: Oceans, 2003, 108(C3): 3102.
|
[15] |
Zhang Jinlun. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions[J]. Journal of Climate, 2007, 20(11): 2515−2529. doi: 10.1175/JCLI4136.1
|
[16] |
Vancoppenolle M, Timmermann R, Ackley S F, et al. Assessment of radiation forcing data sets for large-scale sea ice models in the Southern Ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58(9/10): 1237−1249.
|
[17] |
Massonnet F, Mathiot P, Fichefet T, et al. A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980−2008 using data assimilation[J]. Ocean Modelling, 2013, 64: 67−75. doi: 10.1016/j.ocemod.2013.01.003
|
[18] |
Shu Q, Song Z, Qiao F. Assessment of sea ice simulations in the CMIP5 models[J]. The Cryosphere, 2015, 9(1): 399−409. doi: 10.5194/tc-9-399-2015
|
[19] |
Shu Qi, Wang Qiang, Song Zhenya, et al. Assessment of sea ice extent in CMIP6 with comparison to observations and CMIP5[J]. Geophysical Research Letters, 2020, 47(9): e2020GL087965. doi: 10.1029/2020GL087965
|
[20] |
王今菲, 杨清华, 于乐江, 等. 南极海冰变化及其气候效应研究述评[J]. 海洋学报, 2021, 43(7): 11−22.
Wang Jinfei, Yang Qinghua, Yu Lejiang, et al. A review on Antarctic sea ice change and its climate effects[J]. Haiyang Xuebao, 2021, 43(7): 11−22.
|
[21] |
Karvonen J, Cheng B, Vihma T, et al. A method for sea ice thickness and concentration analysis based on SAR data and a thermodynamic model[J]. The Cryosphere, 2012, 6(6): 1507−1526. doi: 10.5194/tc-6-1507-2012
|
[22] |
Kwok R, Nghiem S V, Yueh S H, et al. Retrieval of thin ice thickness from multifrequency polarimetric SAR data[J]. Remote sensing of environment, 1995, 51(3): 361−374. doi: 10.1016/0034-4257(94)00017-H
|
[23] |
Laxon S, Peacock N, Smith D. High interannual variability of sea ice thickness in the Arctic region[J]. Nature, 2003, 425(6961): 947−950. doi: 10.1038/nature02050
|
[24] |
Kwok R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018)[J]. Environmental Research Letters, 2018, 13(10): 105005. doi: 10.1088/1748-9326/aae3ec
|
[25] |
Kwok R, Rothrock D A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008[J]. Geophysical Research Letters, 2009, 36(15): L15501.
|
[26] |
Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume[J]. Geophysical Research Letters, 2013, 40(4): 732−737. doi: 10.1002/grl.50193
|
[27] |
Giles K A, Laxon S W, Worby A P. Antarctic sea ice elevation from satellite radar altimetry[J]. Geophysical Research Letters, 2008, 35(3): L03503.
|
[28] |
Schwegmann S, Rinne E, Ricker R, et al. About the consistency between Envisat and CryoSat-2 radar freeboard retrieval over Antarctic sea ice[J]. The Cryosphere, 2016, 10(4): 1415−1425. doi: 10.5194/tc-10-1415-2016
|
[29] |
Kwok R, Kacimi S. Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2[J]. The Cryosphere, 2018, 12(8): 2789−2801. doi: 10.5194/tc-12-2789-2018
|
[30] |
陈亦卓, 季青, 庞小平. 基于CryoSat-2卫星测高数据分析南极海冰厚度的时空变化[J]. 冰川冻土, 2019, 41(5): 1214−1220.
Chen Yizhuo, Ji Qing, Pang Xiaoping. Spatio-temporal variation of Antarctic sea ice thickness using Cryosat-2 satellite altimeter data[J]. Journalof Glaciology and Geocryology, 2019, 41(5): 1214−1220.
|
[31] |
Yi Donghui, Zwally H J, Robbins J W. ICESat observations of seasonal and interannual variations of sea-ice freeboard and estimated thickness in the Weddell Sea, Antarctica (2003–2009)[J]. Annals of Glaciology, 2011, 52(57): 43−51. doi: 10.3189/172756411795931480
|
[32] |
Xie Hongjie, Tekeli A E, Ackley S F, et al. Sea ice thickness estimations from ICESat altimetry over the Bellingshausen and Amundsen Seas, 2003–2009[J]. Journal of Geophysical Research: Oceans, 2013, 118(5): 2438−2453. doi: 10.1002/jgrc.20179
|
[33] |
Kern S, Ozsoy-Çiçek B. Satellite remote sensing of snow depth on Antarctic Sea Ice: an inter-comparison of two empirical approaches[J]. Remote Sensing, 2016, 8(6): 450. doi: 10.3390/rs8060450
|
[34] |
Li Huan, Xie Hongjie, Kern S, et al. Spatio-temporal variability of Antarctic sea-ice thickness and volume obtained from ICESat data using an innovative algorithm[J]. Remote Sensing of Environment, 2018, 219: 44−61. doi: 10.1016/j.rse.2018.09.031
|
[35] |
Xu Yue, Li Huan, Liu Baojian, et al. Deriving Antarctic sea-ice thickness from satellite altimetry and estimating consistency for NASA’s ICESat/ICESat-2 missions[J]. Geophysical Research Letters, 2021, 48(20): e2021GL093425. doi: 10.1029/2021GL093425
|
[36] |
Paul S, Hendricks S, Rinne E. Sea ice thickness algorithm theoretical basis document (ATBD)[EB/OL]. European Space Agenda, 2017 [2017−09−25]. https://admin.climate.esa.int/media/documents/Sea_Ice_Thickness_Algorithm_Theoretical_Basis_Document_1.0.pdf.
|
[37] |
高翔, 庞小平, 季青. 利用CryoSat-2测高数据研究南极威德尔海海冰出水高度时空变化[J]. 武汉大学学报(信息科学版), 2021, 46(1): 125−132.
Gao Xiang, Pang Xiaoping, Ji Qing. Spatiotemporal variation of sea ice freeboard in the Antarctic WeddellSea based on CryoSat-2 altimeter data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 125−132.
|
[38] |
Garnier F, Bocquet M, Fleury S, et al. Latest altimetry-based sea ice freeboard and volume inter-annual variability in the Antarctic over 2003–2020[J]. Remote Sensing, 2022, 14(19): 4741. doi: 10.3390/rs14194741
|
[39] |
Fons S, Kurtz N, Bagnardi M. A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting[J]. The Cryosphere, 2023, 17(6): 2487−2508. doi: 10.5194/tc-17-2487-2023
|
[40] |
Markus T, Massom R, Worby A, et al. Freeboard, snow depth and sea-ice roughness in east Antarctica from in situ and multiple satellite data[J]. Annals of Glaciology, 2011, 52(57): 242−248. doi: 10.3189/172756411795931570
|
[41] |
Kwok R, Cunningham G F, Markus T, et al. ATLAS/ICESat-2 L3A sea ice height, version 1[EB/OL]. National Snow and Ice Data Center, 2019 [2019−05−23]. https://doi.org/10.5067/ATLAS/ATL07.001.
|
[42] |
Kwok R, Kacimi S, Markus T, et al. ICESat-2 surface height and sea ice freeboard assessed with ATM Lidaracquisitions from Operation Ice Bridge[J]. Geophysical Research Letters, 2019, 46(20): 11228−11236. doi: 10.1029/2019GL084976
|
[43] |
Shen Xiaoyi, Ke Changqing, Li Haili. Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers[J]. Earth System Science Data, 2022, 14(2): 619−636. doi: 10.5194/essd-14-619-2022
|
[44] |
Comiso J C, Cavalieri D J, Markus T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 243−252. doi: 10.1109/TGRS.2002.808317
|
[45] |
Kurtz N T, Farrell S L, Studinger M, et al. Sea ice thickness, freeboard, and snow depth products from Operation Ice Bridge airborne data[J]. The Cryosphere, 2013, 7(4): 1035−1056. doi: 10.5194/tc-7-1035-2013
|
[46] |
Krabill W B, Thomas R H, Martin C F, et al. Accuracy of airborne laser altimetry over the Greenland ice sheet[J]. International Journal of Remote Sensing, 1995, 16(7): 1211−1222. doi: 10.1080/01431169508954472
|
[47] |
Zwally H J, Yi Donghui, Kwok R, et al. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02S15.
|
[48] |
Kern S, Spreen G. Uncertainties in Antarctic sea-ice thickness retrieval from ICESat[J]. Annals of Glaciology, 2015, 56(69): 107−119. doi: 10.3189/2015AoG69A736
|
[49] |
Ricker R, Hendricks S, Helm V, et al. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation[J]. The Cryosphere, 2014, 8(4): 1607−1622. doi: 10.5194/tc-8-1607-2014
|
[50] |
Nandan V, Geldsetzer T, Yackel J, et al. Effect of snow salinity on CryoSat-2 Arctic first-year sea ice freeboard measurements[J]. Geophysical Research Letters, 2017, 44(20): 10.
|
[51] |
Li Mengmeng, Ke Changqing, Xie Hongjie, et al. Arctic sea ice thickness retrievals from CryoSat-2: seasonal and interannual comparisons of three different products[J]. International Journal of Remote Sensing, 2020, 41(1): 152−170. doi: 10.1080/01431161.2019.1637961
|
[52] |
Wang Xianwei, Jiang Weixu, Xie Hongjie, et al. Decadal variations of sea ice thickness in the Amundsen-Bellingshausen and Weddell seas retrieved from ICESat and IceBridge laser altimetry, 2003–2017[J]. Journal of Geophysical Research: Oceans, 2020, 125(7): e2020JC016077. doi: 10.1029/2020JC016077
|
[53] |
Adusumilli S, Fricker H A, Medley B, et al. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves[J]. Nature Geoscience, 2020, 13(9): 616−620. doi: 10.1038/s41561-020-0616-z
|
[54] |
Rignot E, Jacobs S, Mouginot J, et al. Ice-shelf melting around Antarctica[J]. Science, 2013, 341(6143): 266−270. doi: 10.1126/science.1235798
|