Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 8
Sep.  2024
Turn off MathJax
Article Contents
Zeng Feihong,Xie Lingling,Wu Kaiming, et al. Effects of a subsurface abnormal anticyclonic eddy on sound propagation in the northwest continental slope of the South China Sea[J]. Haiyang Xuebao,2024, 46(8):19–36 doi: 10.12284/hyxb2024083
Citation: Zeng Feihong,Xie Lingling,Wu Kaiming, et al. Effects of a subsurface abnormal anticyclonic eddy on sound propagation in the northwest continental slope of the South China Sea[J]. Haiyang Xuebao,2024, 46(8):19–36 doi: 10.12284/hyxb2024083

Effects of a subsurface abnormal anticyclonic eddy on sound propagation in the northwest continental slope of the South China Sea

doi: 10.12284/hyxb2024083
  • Received Date: 2024-03-07
  • Rev Recd Date: 2024-06-26
  • Available Online: 2024-08-16
  • Publish Date: 2024-09-26
  • Using temperature-salinity profiles and current measurements, satellite data and reanalysis data in April 2018, this study analyses the acoustic field characteristics and effects of an abnormal anticyclonic eddy (AAE) on acoustic propagation on the continental slope area in the northwestern South China Sea (SCS). The results show that the AAE has a lens-shaped structure with a surface cold core, a shallower mixed layer, and subsurface intensified velocities. Unlike the concave sound-speed contours in the normal anticyclonic eddy (NAE), the sound-speed distribution in the abnormal anticyclonic eddy (AAE) exhibits a lens-shaped structure with an upward convexity and downward concavity. The surface sound speed within the eddy is lower than that outside, showing a negative anomaly (<−2 m/s). Conversely, the sound speed in the subsurface layer of the eddy is higher than that outside, showing a positive anomaly (>11 m/s). This results in the thickness of the original double thermocline extending up and down by a total of 47 meters in the presence of the eddy. As the sound propagates from the eddy outside on the shelf to the deep sea, the surface sound channel disappears as the propagation distances decreasing in the AAE, contrast to the increased distance in the NAE. As the sound propagates from the eddy outside in the deep ocean to the shelf, the location of the sound energy convergence zone moves backward and downward in the AAE, with the maximum distance exceeding 24 km and 0.3 km, respectively. This is similar to the situation in the NAE. As the sound propagates from the eddy core to outside in the deep sea, the turning depth of the sound deepens and the distance between the sound energy convergence zones doubles in the AAE, while no changes in the NAE.
  • loading
  • [1]
    Zhang Zhengguang, Wang Wei, Qiu Bo. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194): 322−324. doi: 10.1126/science.1252418
    [2]
    Frenger I, Gruber N, Knutti R, et al. Imprint of southern ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8): 608−612. doi: 10.1038/ngeo1863
    [3]
    Gaube P, Chelton D B, Samelson R M, et al. Satellite observations of mesoscale eddy-induced Ekman pumping[J]. Journal of Physical Oceanography, 2015, 45(1): 104−132. doi: 10.1175/JPO-D-14-0032.1
    [4]
    Hausmann U, Czaja A. The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 70: 60−72. doi: 10.1016/j.dsr.2012.08.005
    [5]
    Khan S, Song Yang, Huang Jian, et al. Analysis of underwater acoustic propagation under the influence of mesoscale ocean vortices[J]. Journal of Marine Science and Engineering, 2021, 9(8): 799. doi: 10.3390/jmse9080799
    [6]
    Henrick R F, Siegmann W L, Jacobson M J. General analysis of ocean eddy effects for sound transmission applications[J]. The Journal of the Acoustical Society of America, 1977, 62(4): 860−870. doi: 10.1121/1.381606
    [7]
    Mellberg L E, Robinson A R, Botseas G. Azimuthal variation of low-frequency acoustic propagation through asymmetric Gulf Stream eddies[J]. The Journal of the Acoustical Society of America, 1991, 89(5): 2157−2167. doi: 10.1121/1.400909
    [8]
    Baer R N. Calculations of sound propagation through an eddy[J]. The Journal of the Acoustical Society of America, 1980, 67(4): 1180−1185. doi: 10.1121/1.384178
    [9]
    张旭, 张健雪, 张永刚, 等. 南海西部中尺度暖涡环境下汇聚区声传播效应分析[J]. 海洋工程, 2011, 29(2): 83−91. doi: 10.3969/j.issn.1005-9865.2011.02.012

    Zhang Xu, Zhang Jianxue, Zhang Yonggang, et al. Effect of acoustic propagation in convergence zone under a warm eddy environment in the western South China Sea[J]. The Ocean Engineering, 2011, 29(2): 83−91. doi: 10.3969/j.issn.1005-9865.2011.02.012
    [10]
    朱凤芹, 张海刚, 屈科. 南海东北部中尺度暖涡对声传播的影响[J]. 哈尔滨工程大学学报, 2021, 42(10): 1496−1502. doi: 10.11990/jheu.202007077

    Zhu Fengqin, Zhang Haigang, Qu Ke. Influence of mesoscale warm eddies on sound propagation in the northeastern South China Sea[J]. Journal of Harbin Engineering University, 2021, 42(10): 1496−1502. doi: 10.11990/jheu.202007077
    [11]
    Qi Yongfeng, Mao Huabin, Du Yan, et al. A lens-shaped, cold-core anticyclonic surface eddy in the northern South China Sea[J]. Frontiers in Marine Science, 2022, 9: 976273. doi: 10.3389/fmars.2022.976273
    [12]
    Sun Wenjin, Dong Changming, Tan Wei, et al. Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the North Pacific based on remote sensing data[J]. Remote Sensing, 2019, 11(2): 208. doi: 10.3390/rs11020208
    [13]
    Timmermans ML, Toole J, Proshutinsky A, et al. Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers[J]. Journal of Physical Oceanography, 2008, 38(1): 133−145. doi: 10.1175/2007JPO3782.1
    [14]
    Sun Wenjin, Liu Yu, Chen Gengxin, et al. Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea[J]. Acta Oceanologica Sinica, 2021, 40(10): 17−29. doi: 10.1007/s13131-021-1770-x
    [15]
    Yang Xiao, Xu Guangjun, Liu Yu, et al. Multi-source data analysis of mesoscale eddies and their effects on surface chlorophyll in the Bay of Bengal[J]. Remote Sensing, 2020, 12(21): 3485. doi: 10.3390/rs12213485
    [16]
    Everett J D, Baird M E, Oke P R, et al. An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea[J]. Geophysical Research Letters, 2012, 39(16): L16608.
    [17]
    Hao Ji, Yang Jie, Chen Ge. The effect of normal and abnormal eddies on the mixed layer depth in the global ocean[J]. Frontiers in Marine Science, 2023, 9: 981505. doi: 10.3389/fmars.2022.981505
    [18]
    Nan Feng, Xue Huijie, Xiu Peng, et al. Oceanic eddy formation and propagation southwest of Taiwan[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12): C12045. doi: 10.1029/2011JC007386
    [19]
    Xie Lingling, Tian Jiwei, Zhang Shuwen, et al. An anticyclonic eddy in the intermediate layer of the Luzon Strait in Autumn 2005[J]. Journal of Oceanography, 2011, 67(1): 37−46. doi: 10.1007/s10872-011-0004-9
    [20]
    林鹏飞, 王凡, 陈永利, 等. 南海中尺度涡的时空变化规律Ⅰ. 统计特征分析[J]. 海洋学报, 2007, 29(3): 14−22. doi: 10.3321/j.issn:0253-4193.2007.03.002

    Lin Pengfei, Wang Fan, Chen Yongli, et al. Temporal and spatial variation characteristics on eddies in the South China SeaⅠ. Statistical analyses[J]. Haiyang Xuebao, 2007, 29(3): 14−22. doi: 10.3321/j.issn:0253-4193.2007.03.002
    [21]
    林宏阳, 胡建宇, 郑全安. 吕宋海峡附近中尺度涡特征的统计分析[J]. 海洋学报, 2012, 34(1): 1−7.

    Lin Hongyang, Hu Jianyu, Zheng Quanan. Statistical analysis of the features of meso-scale eddies near the Luzon Strait[J]. Haiyang Xuebao, 2012, 34(1): 1−7.
    [22]
    Liu Yuji, Jing Zhiyou. In trathermocline eddy with lens-shaped low potential vorticity and diabatic forcing mechanism in the South China Sea[J]. Journal of Physical Oceanography, 2024, 54(3): 929−948. doi: 10.1175/JPO-D-23-0149.1
    [23]
    Wang Xiangpeng, Du Yan, Zhang Yuhong, et al. Subsurface anticyclonic eddy transited from Kuroshio shedding eddy in the northern South China Sea[J]. Journal of Physical Oceanography, 2023, 53(3): 841−861. doi: 10.1175/JPO-D-22-0106.1
    [24]
    Frenger I, Münnich M, Gruber N, et al. Southern Ocean eddy phenomenology[J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7413−7449. doi: 10.1002/2015JC011047
    [25]
    Dillon T M. Vertical overturns: a comparison of Thorpe and Ozmidov length scales[J]. Journal of Geophysical Research: Oceans, 1982, 87(C12): 9601−9613. doi: 10.1029/JC087iC12p09601
    [26]
    Qi Yongfeng, Shang Chenjing, Mao Huabin, et al. Spatial structure of turbulent mixing of an anticyclonic mesoscale eddy in the northern South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(11): 69−81. doi: 10.1007/s13131-020-1676-z
    [27]
    Lin Hongyang, Hu Jianyu, Liu Zhiyu, et al. A peculiar lens-shaped structure observed in the South China Sea[J]. Scientific Reports, 2017, 7(1): 478. doi: 10.1038/s41598-017-00593-y
    [28]
    Liu Yingjie, Yu Lisan, Chen Ge. Characterization of sea surface temperature and air-sea heat flux anomalies associated with mesoscale eddies in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2019JC015470. doi: 10.1029/2019JC015470
    [29]
    Zhang Zhisheng, Xie Lingling, Zheng Quanan, et al. Coherence of eddy kinetic Energy variation during eddy life span to low-frequency ageostrophic energy[J]. Remote Sensing, 2022, 14(15): 3793. doi: 10.3390/rs14153793
    [30]
    邹颖俊, 王晓春, 何贤强. 基于统计学方法的HYCOM海洋预报结果评价[J]. 湘潭大学自然科学学报, 2018, 40(3): 104−108.

    Zou Yingjun, Wang Xiaochun, He Xianqiang. Evaluation of HYCOM ocean forecasting fields based on statistical method[J]. Natural Science Journal of Xiangtan University, 2018, 40(3): 104−108.
    [31]
    吴碧, 陈长安, 林龙. 声速经验公式的适用范围分析[J]. 声学技术, 2014, 33(6): 504−507.

    Wu Bi, Chen Chang’an, Lin Long. Analysis of applicable scope of empirical equation for sound velocity[J]. Technical Acoustics, 2014, 33(6): 504−507.
    [32]
    Jensen F B, Kuperman W A, Porter M B, et al. Computational Ocean Acoustics[M]. New York: Springer, 2011.
    [33]
    刘昭蜀. 南海地质[M]. 北京: 科学出版社, 2002.

    Liu Zhaoshu. Geologyof the South China Sea[M]. Beijing: SciencePress, 2002.
    [34]
    Hamilton E L. Geoacoustic modeling of the sea floor[J]. The Journal of the Acoustical Society of America, 1980, 68(5): 1313−1340. doi: 10.1121/1.385100
    [35]
    代伟. 基于BELLHOP声线模型的水声信道特性研究[J]. 舰船电子工程, 2023, 43(8): 212−215. doi: 10.3969/j.issn.1672-9730.2023.08.041

    Dai Wei. Investigation of underwater acoustic channel properties based on Bellhoprays model[J]. Ship Electronic Engineering, 2023, 43(8): 212−215. doi: 10.3969/j.issn.1672-9730.2023.08.041
    [36]
    Qi Yongfeng, Mao Huabin, Wang Xia, et al. Suppressed thermocline mixing in the center of anticyclonic eddy in the north South China Sea[J]. Journal of Marine Science and Engineering, 2021, 9(10): 1149. doi: 10.3390/jmse9101149
    [37]
    Evans D G, Frajka-Williams E, Naveira Garabato A C. Dissipation of mesoscale eddies at a western boundary via a direct energy cascade[J]. Scientific Reports, 2022, 12(1): 887. doi: 10.1038/s41598-022-05002-7
    [38]
    侍茂崇, 高郭平, 鲍献文. 海洋调查方法[M]. 青岛: 青岛海洋大学出版社, 2000.

    Shi Maochong, Gao Guoping, Bao Xianwen. Oceanographic Investigation Mehtods[M]. Qiangdao: Ocean University of Qingdao Press, 2000.
    [39]
    Hassantabar Bozroudi S H, Ciani D, Mohammad Mahdizadeh M, et al. Effect of subsurface Mediterranean water eddies on sound propagation using ROMS output and the Bellhop Model[J]. Water, 2021, 13(24): 3617. doi: 10.3390/w13243617
    [40]
    Xiao Yao, Li Zhenglin, Li Jun, et al. Influence of warm eddies on sound propagation in the Gulf of Mexico[J]. Chinese Physics B, 2019, 28(5): 054301. doi: 10.1088/1674-1056/28/5/054301
    [41]
    Chen Wen, Zhang Yongchui, Liu Yuyao, et al. Parametric model for eddies-induced sound speed anomaly in five active mesoscale eddy regions[J]. Journal of Geophysical Research: Oceans, 2022, 127(8): e2022JC018408. doi: 10.1029/2022JC018408
    [42]
    卢晓亭, 胡均川, 李玉阳. 海洋涡中的三维声传播分析[C]//中国声学学会1999年青年学术会议[CYCA’99]论文集. 武汉: 同济大学出版社, 1999: 2.

    Lu Xiaoting, Hu Junchuan, Li Yuyang. 3-Dimensional analysis of souns transmission in ocean eddy[C]//Acoustical Society of China 1999 Youth Academic Meeting. Wuhan: Tongji University Press, 1999: 2.
    [43]
    Jian Y J, Zhang J, Liu Q S, et al. Effect of mesoscale eddies on underwater sound propagation[J]. Applied Acoustics, 2009, 70(3): 432−440. doi: 10.1016/j.apacoust.2008.05.007
    [44]
    李佳讯, 张韧, 陈奕德, 等. 海洋中尺度涡建模及其在水声传播影响研究中的应用[J]. 海洋通报, 2011, 30(1): 37−46. doi: 10.3969/j.issn.1001-6392.2011.01.007

    Li Jiaxun, Zhang Ren, Chen Yide, et al. Ocean mesoscale eddy modeling and its application in studying the effect on underwater acoustic propagation[J]. Marine Science Bulletin, 2011, 30(1): 37−46. doi: 10.3969/j.issn.1001-6392.2011.01.007
    [45]
    Liu Jiaqi, Piao Shengchun, Gong Lijia, et al. The effect of mesoscale eddy on the characteristic of sound propagation[J]. Journal of Marine Science and Engineering, 2021, 9(8): 787. doi: 10.3390/jmse9080787
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article views (139) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return