Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 8
Sep.  2024
Turn off MathJax
Article Contents
Wang Yu,Su Jie. Simulation of the impact of black carbon on snow and sea ice in the Arctic Ocean[J]. Haiyang Xuebao,2024, 46(8):89–107 doi: 10.12284/hyxb2024077
Citation: Wang Yu,Su Jie. Simulation of the impact of black carbon on snow and sea ice in the Arctic Ocean[J]. Haiyang Xuebao,2024, 46(8):89–107 doi: 10.12284/hyxb2024077

Simulation of the impact of black carbon on snow and sea ice in the Arctic Ocean

doi: 10.12284/hyxb2024077
  • Received Date: 2024-03-27
  • Rev Recd Date: 2024-06-07
  • Available Online: 2024-08-15
  • Publish Date: 2024-09-26
  • When black carbon deposits on snow/ice surface, it can reduce the albedo and increase the absorption of shortwave radiation. The changes in black carbon and their impact on the sea ice melting process are worth investigating. Study of the influence of black carbon in the Arctic Ocean was conducted using the CICE sea ice model. The results indicates that under the impact of black carbon deposition from different sources, from 1980 to 2014, the simulated summer albedo of the Arctic Ocean decreased by 0.82% to 1.71%, ultimately causing a decrease in sea ice extent by 0.97%−1.93%. In the Barents Sea, Kara Sea, and Laptev Sea, the summer sea ice area reduction caused by black carbon is approximately 2–3 times greater than the overall reduction in the Arctic Ocean. The simulation results under different black carbon deposition all show that from 1980 to 1995, the impact of black carbon on albedo in the Arctic exhibited a decreasing trend. However, from 1996 to 2014, the black carbon effect shifted to an increasing trend. In low-latitude regions, due to the retreat of sea ice, the effect of black carbon showed a decreasing trend, while in high-latitude regions, due to the cumulative effect of black carbon in multi-year ice, the radiative impact of black carbon showed an enhancing effect.
  • loading
  • [1]
    Bond T C, Doherty S J, Fahey D W, et al. Bounding the role of black carbon in the climate system: a scientific assessment[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5380−5552. doi: 10.1002/jgrd.50171
    [2]
    Irannezhad M, Liu Junguo, Ahmadi B, et al. The dangers of Arctic zombie wildfires[J]. Science, 2020, 369(6508): 1171.
    [3]
    谷玥, 陆志波, 姚俊兰. 基于CiteSpace的近30年北极环境研究热点图谱分析[J]. 极地研究, 2021, 33(3): 432−450.

    Gu Yue, Lu Zhibo, Yao Junlan. Atlas analysis of 30 years of arctic environmental research trends using CiteSpace[J]. Chinese Journal of Polar Research, 2021, 33(3): 432−450.
    [4]
    Wiscombe W J, Warren S G. A model for the spectral albedo of snow. I: pure snow[J]. Journal of the Atmospheric Sciences, 1980, 37(12): 2712−2733. doi: 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
    [5]
    Warren S G, Wiscombe W J. A model for the spectral albedo of snow. II: snow containing atmospheric aerosols[J]. Journal of the Atmospheric Sciences, 1980, 37(12): 2734−2745. doi: 10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2
    [6]
    Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(2): 423−428.
    [7]
    Sharma S, Andrews E, Barrie L A, et al. Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at alert and Barrow: 1989−2003[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D14): D14208.
    [8]
    Sharma S, Ishizawa M, Chan D, et al. 16-year simulation of Arctic black carbon: transport, source contribution, and sensitivity analysis on deposition[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 943−964. doi: 10.1029/2012JD017774
    [9]
    Ruppel M M, Eckhardt S, Pesonen A, et al. Observed and modeled black carbon deposition and sources in the western Russian Arctic 1800−2014[J]. Environmental Science & Technology, 2021, 55(8): 4368−4377.
    [10]
    Xian Peng, Zhang Jianglong, O'Neill N T, et al. Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – part 1: climatology and trend[J]. Atmospheric Chemistry and Physics, 2022, 22(15): 9915−9947. doi: 10.5194/acp-22-9915-2022
    [11]
    Dou T, Xiao Cheche, Shindell D T, et al. The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model[J]. Atmospheric Chemistry and Physics, 2012, 12(17): 7995−8007. doi: 10.5194/acp-12-7995-2012
    [12]
    Goldenson N, Doherty S J, Bitz C M, et al. Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM[J]. Atmospheric Chemistry and Physics, 2012, 12(17): 7903−7920. doi: 10.5194/acp-12-7903-2012
    [13]
    Li Yang, Flanner M G. Investigating the impact of aerosol deposition on snowmelt over the Greenland ice sheet using a large-ensemble kernel[J]. Atmospheric Chemistry and Physics, 2018, 18(21): 16005−16018. doi: 10.5194/acp-18-16005-2018
    [14]
    Chen Yang, Li Xuejing, Xing Yuxuan, et al. Historical changes of black carbon in snow and its radiative forcing in CMIP6 models[J]. Atmosphere, 2022, 13(11): 1774. doi: 10.3390/atmos13111774
    [15]
    Shen S, Ostrenga D M, Zeng Jian, et al. Studying diurnal variations of aerosols with NASA MERRA-2 reanalysis data[C]//Annual American Meteorological Society (AMS) Meeting 2018. Austin: American Meteorological Society, 2018.
    [16]
    Danabasoglu G, Lamarque J F, Bacmeister J, et al. The community earth system model version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(2): e2019MS001916. doi: 10.1029/2019MS001916
    [17]
    Swart N C, Cole J N S, Kharin V V, et al. The Canadian earth system model version 5 (CanESM5.0. 3)[J]. Geoscientific Model Development, 2019, 12(11): 4823−4873. doi: 10.5194/gmd-12-4823-2019
    [18]
    Kataoka T, Tatebe H, Koyama H, et al. Seasonal to decadal predictions with MIROC6: description and basic evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12): e2019MS002035. doi: 10.1029/2019MS002035
    [19]
    Yukimoto S, Kawai H, Koshiro T, et al. The meteorological research institute earth system model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component[J]. Journal of the Meteorological Society of Japan, 2019, 97(5): 931−965.
    [20]
    Volodin E. The mechanisms of cloudiness evolution responsible for equilibrium climate sensitivity in climate model INM-CM4-8[J]. Geophysical Research Letters, 2021, 48(24): e2021GL096204. doi: 10.1029/2021GL096204
    [21]
    Boucher O, Servonnat J, Albright A L, et al. Presentation and evaluation of the IPSL-CM6A-LR climate model[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(7): e2019MS002010. doi: 10.1029/2019MS002010
    [22]
    Seland Ø, Bentsen M, Olivié D, et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations[J]. Geoscientific Model Development, 2020, 13(12): 6165-6200.
    [23]
    Döscher R, Acosta M, Alessandri A, et al. The EC-Earth3 Earth system model for the coupled model intercomparison project 6[J]. Geoscientific Model Development, 2022, 15(7): 2973−3020. doi: 10.5194/gmd-15-2973-2022
    [24]
    Dunne J P, Horowitz L W, Adcroft A J, et al. The GFDL Earth system model version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(11): e2019MS002015. doi: 10.1029/2019MS002015
    [25]
    Hersbach H, Bell B, Berrisford P, et al. ERA5 monthly averaged data on single levels from 1940 to present[EB/OL]. https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means%3Ftab=form?tab=overview, 2019-04-18.
    [26]
    Key J, Wang X, Liu Y. NOAA Climate Data Record of AVHRR Polar Pathfinder Extended (APP-X), Version 1.0[J]. NOAA National Centers for Environmental Information, 2014.
    [27]
    DiGirolamo N E, Parkinson C L, Cavalieri D J, et al. Sea ice concentrations from nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 2[R]. Boulder: NASA National Snow and Ice Data Center Distributed Active Archive Center, 2022.
    [28]
    Hunke E, Lipscomb W, Jones P, et al. CICE, the Los Alamos sea ice model[R]. Los Alamos: Los Alamos National Laboratory (LANL), 2017.
    [29]
    Briegleb P, Light B. A delta-eddington mutiple scattering parameterization for solar radiation in the sea ice component of the community climate system model[R]. Boulder: National Center for Atmospheric Research, 2007.
    [30]
    Holland M M, Bailey D A, Briegleb B P, et al. Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice[J]. Journal of Climate, 2012, 25(5): 1413−1430. doi: 10.1175/JCLI-D-11-00078.1
    [31]
    Flanner M G, Zender C S, Randerson J T, et al. Present‐day climate forcing and response from black carbon in snow[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D11): D11202.
    [32]
    赵玉娇, 高坛光, 张玉兰, 等. 典型冰冻圈区域河流黑碳研究进展[J]. 冰川冻土, 2023, 45(2): 327−340.

    Zhao Yujiao, Gao Tanguang, Zhang Yulan, et al. Research progress of riverine black carbon in typical cryospheric regions[J]. Journal of Glaciology and Geocryology, 2023, 45(2): 327−340.
    [33]
    Jurado E, Dachs J, Duarte C M, et al. Atmospheric deposition of organic and black carbon to the global oceans[J]. Atmospheric Environment, 2008, 42(34): 7931−7939. doi: 10.1016/j.atmosenv.2008.07.029
    [34]
    Jurado E, Jaward F, Lohmann R, et al. Wet deposition of persistent organic pollutants to the global oceans[J]. Environmental Science & Technology, 2005, 39(8): 2426−2435.
    [35]
    Dou Tingfeng, Xiao Cunde. An overview of black carbon deposition and its radiative forcing over the Arctic[J]. Advances in Climate Change Research, 2016, 7(3): 115−122. doi: 10.1016/j.accre.2016.10.003
    [36]
    Zhang Zilu, Zhou Libo, Zhang Meigen. A progress review of black carbon deposition on Arctic snow and ice and its impact on climate change[J]. Advances in Polar Science, 2024, 35(2): 178−191.
    [37]
    Doherty S J, Warren S G, Grenfell T C, et al. Light-absorbing impurities in Arctic snow[J]. Atmospheric Chemistry and Physics, 2010, 10(23): 11647−11680. doi: 10.5194/acp-10-11647-2010
    [38]
    Forsström S, Ström J, Pedersen C A, et al. Elemental carbon distribution in Svalbard snow[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D19): D19112.
    [39]
    曹淑涛, 苏洁, 李涛, 等. 基于Icepack海冰柱模式的融池反照率模拟研究[J]. 海洋学报, 2021, 43(7): 63−74.

    Cao Shutao, Su Jie, Li Tao, et al. Study on melt pond albedo based on Icepack sea ice column model[J]. Haiyang Xuebao, 2021, 43(7): 63−74.
    [40]
    Ruppel M M, Isaksson E, Ström J, et al. Increase in elemental carbon values between 1970 and 2004 observed in a 300-year ice core from Holtedahlfonna (Svalbard)[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 11447−11460. doi: 10.5194/acp-14-11447-2014
    [41]
    Ruppel M M, Gustafsson Ö, Rose N L, et al. Spatial and temporal patterns in black carbon deposition to dated Fennoscandian Arctic lake sediments from 1830 to 2010[J]. Environmental Science & Technology, 2015, 49(24): 13954−13963.
    [42]
    Du Jiao, Ma Jianmin, Huang Tao, et al. Response of arctic black carbon contamination and climate forcing to global supply chain relocation[J]. Environmental Science & Technology, 2023, 57(23): 8691−8700.
    [43]
    Zhao Che, Hu Zhiyuan, Qian Y, et al. Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 11475−11491. doi: 10.5194/acp-14-11475-2014
    [44]
    Chen Xintong, Kang Shichang, Yang Junhua, et al. Investigation of black carbon climate effects in the Arctic in winter and spring[J]. Science of the Total Environment, 2021, 751: 142145. doi: 10.1016/j.scitotenv.2020.142145
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article views (65) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return