Citation: | Wang Yu,Su Jie. Simulation of the impact of black carbon on snow and sea ice in the Arctic Ocean[J]. Haiyang Xuebao,2024, 46(8):89–107 doi: 10.12284/hyxb2024077 |
[1] |
Bond T C, Doherty S J, Fahey D W, et al. Bounding the role of black carbon in the climate system: a scientific assessment[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5380−5552. doi: 10.1002/jgrd.50171
|
[2] |
Irannezhad M, Liu Junguo, Ahmadi B, et al. The dangers of Arctic zombie wildfires[J]. Science, 2020, 369(6508): 1171.
|
[3] |
谷玥, 陆志波, 姚俊兰. 基于CiteSpace的近30年北极环境研究热点图谱分析[J]. 极地研究, 2021, 33(3): 432−450.
Gu Yue, Lu Zhibo, Yao Junlan. Atlas analysis of 30 years of arctic environmental research trends using CiteSpace[J]. Chinese Journal of Polar Research, 2021, 33(3): 432−450.
|
[4] |
Wiscombe W J, Warren S G. A model for the spectral albedo of snow. I: pure snow[J]. Journal of the Atmospheric Sciences, 1980, 37(12): 2712−2733. doi: 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
|
[5] |
Warren S G, Wiscombe W J. A model for the spectral albedo of snow. II: snow containing atmospheric aerosols[J]. Journal of the Atmospheric Sciences, 1980, 37(12): 2734−2745. doi: 10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2
|
[6] |
Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(2): 423−428.
|
[7] |
Sharma S, Andrews E, Barrie L A, et al. Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at alert and Barrow: 1989−2003[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D14): D14208.
|
[8] |
Sharma S, Ishizawa M, Chan D, et al. 16-year simulation of Arctic black carbon: transport, source contribution, and sensitivity analysis on deposition[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 943−964. doi: 10.1029/2012JD017774
|
[9] |
Ruppel M M, Eckhardt S, Pesonen A, et al. Observed and modeled black carbon deposition and sources in the western Russian Arctic 1800−2014[J]. Environmental Science & Technology, 2021, 55(8): 4368−4377.
|
[10] |
Xian Peng, Zhang Jianglong, O'Neill N T, et al. Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – part 1: climatology and trend[J]. Atmospheric Chemistry and Physics, 2022, 22(15): 9915−9947. doi: 10.5194/acp-22-9915-2022
|
[11] |
Dou T, Xiao Cheche, Shindell D T, et al. The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model[J]. Atmospheric Chemistry and Physics, 2012, 12(17): 7995−8007. doi: 10.5194/acp-12-7995-2012
|
[12] |
Goldenson N, Doherty S J, Bitz C M, et al. Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM[J]. Atmospheric Chemistry and Physics, 2012, 12(17): 7903−7920. doi: 10.5194/acp-12-7903-2012
|
[13] |
Li Yang, Flanner M G. Investigating the impact of aerosol deposition on snowmelt over the Greenland ice sheet using a large-ensemble kernel[J]. Atmospheric Chemistry and Physics, 2018, 18(21): 16005−16018. doi: 10.5194/acp-18-16005-2018
|
[14] |
Chen Yang, Li Xuejing, Xing Yuxuan, et al. Historical changes of black carbon in snow and its radiative forcing in CMIP6 models[J]. Atmosphere, 2022, 13(11): 1774. doi: 10.3390/atmos13111774
|
[15] |
Shen S, Ostrenga D M, Zeng Jian, et al. Studying diurnal variations of aerosols with NASA MERRA-2 reanalysis data[C]//Annual American Meteorological Society (AMS) Meeting 2018. Austin: American Meteorological Society, 2018.
|
[16] |
Danabasoglu G, Lamarque J F, Bacmeister J, et al. The community earth system model version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(2): e2019MS001916. doi: 10.1029/2019MS001916
|
[17] |
Swart N C, Cole J N S, Kharin V V, et al. The Canadian earth system model version 5 (CanESM5.0. 3)[J]. Geoscientific Model Development, 2019, 12(11): 4823−4873. doi: 10.5194/gmd-12-4823-2019
|
[18] |
Kataoka T, Tatebe H, Koyama H, et al. Seasonal to decadal predictions with MIROC6: description and basic evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12): e2019MS002035. doi: 10.1029/2019MS002035
|
[19] |
Yukimoto S, Kawai H, Koshiro T, et al. The meteorological research institute earth system model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component[J]. Journal of the Meteorological Society of Japan, 2019, 97(5): 931−965.
|
[20] |
Volodin E. The mechanisms of cloudiness evolution responsible for equilibrium climate sensitivity in climate model INM-CM4-8[J]. Geophysical Research Letters, 2021, 48(24): e2021GL096204. doi: 10.1029/2021GL096204
|
[21] |
Boucher O, Servonnat J, Albright A L, et al. Presentation and evaluation of the IPSL-CM6A-LR climate model[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(7): e2019MS002010. doi: 10.1029/2019MS002010
|
[22] |
Seland Ø, Bentsen M, Olivié D, et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations[J]. Geoscientific Model Development, 2020, 13(12): 6165-6200.
|
[23] |
Döscher R, Acosta M, Alessandri A, et al. The EC-Earth3 Earth system model for the coupled model intercomparison project 6[J]. Geoscientific Model Development, 2022, 15(7): 2973−3020. doi: 10.5194/gmd-15-2973-2022
|
[24] |
Dunne J P, Horowitz L W, Adcroft A J, et al. The GFDL Earth system model version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(11): e2019MS002015. doi: 10.1029/2019MS002015
|
[25] |
Hersbach H, Bell B, Berrisford P, et al. ERA5 monthly averaged data on single levels from 1940 to present[EB/OL]. https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means%3Ftab=form?tab=overview, 2019-04-18.
|
[26] |
Key J, Wang X, Liu Y. NOAA Climate Data Record of AVHRR Polar Pathfinder Extended (APP-X), Version 1.0[J]. NOAA National Centers for Environmental Information, 2014.
|
[27] |
DiGirolamo N E, Parkinson C L, Cavalieri D J, et al. Sea ice concentrations from nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 2[R]. Boulder: NASA National Snow and Ice Data Center Distributed Active Archive Center, 2022.
|
[28] |
Hunke E, Lipscomb W, Jones P, et al. CICE, the Los Alamos sea ice model[R]. Los Alamos: Los Alamos National Laboratory (LANL), 2017.
|
[29] |
Briegleb P, Light B. A delta-eddington mutiple scattering parameterization for solar radiation in the sea ice component of the community climate system model[R]. Boulder: National Center for Atmospheric Research, 2007.
|
[30] |
Holland M M, Bailey D A, Briegleb B P, et al. Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice[J]. Journal of Climate, 2012, 25(5): 1413−1430. doi: 10.1175/JCLI-D-11-00078.1
|
[31] |
Flanner M G, Zender C S, Randerson J T, et al. Present‐day climate forcing and response from black carbon in snow[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D11): D11202.
|
[32] |
赵玉娇, 高坛光, 张玉兰, 等. 典型冰冻圈区域河流黑碳研究进展[J]. 冰川冻土, 2023, 45(2): 327−340.
Zhao Yujiao, Gao Tanguang, Zhang Yulan, et al. Research progress of riverine black carbon in typical cryospheric regions[J]. Journal of Glaciology and Geocryology, 2023, 45(2): 327−340.
|
[33] |
Jurado E, Dachs J, Duarte C M, et al. Atmospheric deposition of organic and black carbon to the global oceans[J]. Atmospheric Environment, 2008, 42(34): 7931−7939. doi: 10.1016/j.atmosenv.2008.07.029
|
[34] |
Jurado E, Jaward F, Lohmann R, et al. Wet deposition of persistent organic pollutants to the global oceans[J]. Environmental Science & Technology, 2005, 39(8): 2426−2435.
|
[35] |
Dou Tingfeng, Xiao Cunde. An overview of black carbon deposition and its radiative forcing over the Arctic[J]. Advances in Climate Change Research, 2016, 7(3): 115−122. doi: 10.1016/j.accre.2016.10.003
|
[36] |
Zhang Zilu, Zhou Libo, Zhang Meigen. A progress review of black carbon deposition on Arctic snow and ice and its impact on climate change[J]. Advances in Polar Science, 2024, 35(2): 178−191.
|
[37] |
Doherty S J, Warren S G, Grenfell T C, et al. Light-absorbing impurities in Arctic snow[J]. Atmospheric Chemistry and Physics, 2010, 10(23): 11647−11680. doi: 10.5194/acp-10-11647-2010
|
[38] |
Forsström S, Ström J, Pedersen C A, et al. Elemental carbon distribution in Svalbard snow[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D19): D19112.
|
[39] |
曹淑涛, 苏洁, 李涛, 等. 基于Icepack海冰柱模式的融池反照率模拟研究[J]. 海洋学报, 2021, 43(7): 63−74.
Cao Shutao, Su Jie, Li Tao, et al. Study on melt pond albedo based on Icepack sea ice column model[J]. Haiyang Xuebao, 2021, 43(7): 63−74.
|
[40] |
Ruppel M M, Isaksson E, Ström J, et al. Increase in elemental carbon values between 1970 and 2004 observed in a 300-year ice core from Holtedahlfonna (Svalbard)[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 11447−11460. doi: 10.5194/acp-14-11447-2014
|
[41] |
Ruppel M M, Gustafsson Ö, Rose N L, et al. Spatial and temporal patterns in black carbon deposition to dated Fennoscandian Arctic lake sediments from 1830 to 2010[J]. Environmental Science & Technology, 2015, 49(24): 13954−13963.
|
[42] |
Du Jiao, Ma Jianmin, Huang Tao, et al. Response of arctic black carbon contamination and climate forcing to global supply chain relocation[J]. Environmental Science & Technology, 2023, 57(23): 8691−8700.
|
[43] |
Zhao Che, Hu Zhiyuan, Qian Y, et al. Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 11475−11491. doi: 10.5194/acp-14-11475-2014
|
[44] |
Chen Xintong, Kang Shichang, Yang Junhua, et al. Investigation of black carbon climate effects in the Arctic in winter and spring[J]. Science of the Total Environment, 2021, 751: 142145. doi: 10.1016/j.scitotenv.2020.142145
|