Citation: | Sun Shichang,Wang Zhiyong,Li Zhenjin, et al. An extraction method for sea ice based on improved DeepLabV3+ model:Taking the Arctic Greenland Sea as an example[J]. Haiyang Xuebao,2024, 46(8):131–142 doi: 10.12284/hyxb2024075 |
[1] |
Serreze M C, Holland M M, Stroeve J. Perspectives on the Arctic’s shrinking sea-ice cover[J]. Science, 2007, 315(5818): 1533−1536. doi: 10.1126/science.1139426
|
[2] |
Trusel L D, Das S B, Osman M B, et al. Nonlinear rise in Greenland runoff in response to post-industrial arctic warming[J]. Nature, 2018, 564(7734): 104−108. doi: 10.1038/s41586-018-0752-4
|
[3] |
葛梦滢, 高稳, 祝敏, 等. 基于SE-ConvLSTM的时空特征融合SAR图像海冰分类[J]. 遥感技术与应用, 2023, 38(6): 1306−1316.
Ge Mengying, Gao Wen, Zhu Min, et al. Sea ice classification of SAR images based on SE-ConvLSTM spatial-temporal feature fusion[J]. Remote Sensing Technology and Application, 2023, 38(6): 1306−1316.
|
[4] |
李小娜, 张杰, 戴永寿, 等. 灰度共生矩阵纹理特征对SAR海冰漂移监测的增强性能研究[J]. 海洋科学, 2018, 42(4): 9−17.
Li Xiaona, Zhang Jie, Dai Yongshou, et al. Research on the enhanced performance of texture feature for sea ice drift monitoring based on gray level co-occurrence matrices[J]. Marine Sciences, 2018, 42(4): 9−17.
|
[5] |
Wang Bin, Xia Linghui, Song Dongmei, et al. A two-round weight voting strategy-based ensemble learning method for sea ice classification of sentinel-1 imagery[J]. Remote Sensing, 2021, 13(19): 3945. doi: 10.3390/rs13193945
|
[6] |
周颖, 匡定波, 巩彩兰, 等. 风云三号卫星MERSI影像提取北极海冰参数的方法[J]. 红外与毫米波学报, 2017, 36(1): 41−48,126−127.
Zhou Ying, Kuang Dingbo, Gong Cailan, et al. A method to extract parameters of Arctic Sea ice from FY-3/MERSI imagery[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 41−48,126−127.
|
[7] |
臧金霞, 刘建强, 殷晓斌, 等. 基于最优特征集的HY-1C卫星海岸带成像仪影像海冰分类方法研究[J]. 海洋学报, 2022, 44(5): 35−46.
Zang Jinxia, Liu Jianqiang, Yin Xiaobin, et al. Study on sea ice classification of HY-1C satellite coastal zone imager images based on the optimal feature set[J]. Haiyang Xuebao, 2022, 44(5): 35−46.
|
[8] |
朱立先, 惠凤鸣, 张智伦, 等. 基于Sentinel-1A/B SAR数据的西北航道海冰分类研究[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 66−76.
Zhu Lixian, Hui Fengming, Zhang Zhilun, et al. Sea ice classification in northwest passage based on Sentinel-1A/B SAR data[J]. Journal of Beijing Normal University (Natural Science), 2019, 55(1): 66−76.
|
[9] |
王志勇, 孙培蕾, 刘健. 一种联合多特征的极化SAR海冰类型提取方法[J]. 遥感信息, 2020, 35(4): 23−29.
Wang Zhiyong, Sun Peilei, Liu Jian. A sea ice classification method of polarimetric SAR data by multi-feature combination[J]. Remote Sensing Information, 2020, 35(4): 23−29.
|
[10] |
王志勇, 张梦悦, 于亚冉, 等. 一种融合纹理特征与NDVI的随机森林海冰精细分类方法[J]. 海洋学报, 2021, 43(10): 149−156.
Wang Zhiyong, Zhang Mengyue, Yu Yaran, et al. A fine classification method for sea ice based on random forest combining texture feature and NDVI[J]. Haiyang Xuebao, 2021, 43(10): 149−156.
|
[11] |
吴斌, 王志勇, 李兴, 等. CryoSat-2雷达高度计海冰波形优选特征分类[J]. 测绘通报, 2023(5): 164−169.
Wu Bin, Wang Zhiyong, Li Xing, et al. CryoSat-2 radar altimeter sea ice waveform preferred feature classification[J]. Bulletin of Surveying and Mapping, 2023(5): 164−169.
|
[12] |
Zakhvatkina N, Korosov A, Muckenhuber S, et al. Operational algorithm for ice–water classification on dual-polarized RADARSAT-2 images[J]. The Cryosphere, 2017, 11(1): 33−46. doi: 10.5194/tc-11-33-2017
|
[13] |
Li Xiaoming, Sun Yan, Zhang Qiang. Extraction of sea ice cover by sentinel-1 SAR based on support vector machine with unsupervised generation of training data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3040−3053. doi: 10.1109/TGRS.2020.3007789
|
[14] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431−3440.
|
[15] |
崔艳荣, 邹斌, 韩震, 等. 卷积神经网络在卫星遥感海冰图像分类中的应用探究——以渤海海冰为例[J]. 海洋学报, 2020, 42(9): 100−109.
Cui Yanrong, Zou Bin, Han Zhen, et al. Application of convolutional neural networks in satellite remote sensing sea ice image classification: a case study of sea ice in the Bohai Sea[J]. Haiyang Xuebao, 2020, 42(9): 100−109.
|
[16] |
郑付强, 匡定波, 胡勇, 等. 基于U-ASPP-Net的北极独立海冰精细识别方法[J]. 红外与毫米波学报, 2021, 40(6): 798−808.
Zheng Fuqiang, Kuang Dingbo, Hu Yong, et al. Refined segmentation method based on U-ASPP-Net for Arctic independent sea ice[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 798−808.
|
[17] |
黄冬梅, 李明慧, 宋巍, 等. 卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估[J]. 中国图象图形学报, 2018, 23(11): 1720−1732. doi: 10.11834/jig.180226
Huang Dongmei, Li Minghui, Song Wei, et al. Performance of convolutional neural network and deep belief network in sea ice-water classification using SAR imagery[J]. Journal of Image and Graphics, 2018, 23(11): 1720−1732. doi: 10.11834/jig.180226
|
[18] |
徐欢, 任沂斌. 基于混合损失U-Net的SAR图像渤海海冰检测研究[J]. 海洋学报, 2021, 43(6): 157−170.
Xu Huan, Ren Yibin. Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model[J]. Haiyang Xuebao, 2021, 43(6): 157−170.
|
[19] |
Sandler M, Howard A, Zhu Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510−4520.
|
[20] |
Huang Gao, Liu Zhuang, Van Der MaatenL, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261−2269.
|
[21] |
Yang Maoke, Yu Kun, Zhang Chi, et al. DenseASPP for semantic segmentation in street scenes[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3684−3692.
|
[22] |
Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132−7141.
|
[23] |
Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3−19.
|
[24] |
Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708−13717.
|