Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
Yang Dan,Fu Quanyou,Han Zhengbing, et al. Effects of plankton productivity/community structure on BP/MCP carbon storage and their interdecadal variations in a typical Antarctic waters[J]. Haiyang Xuebao,2024, 46(5):37–56 doi: 10.12284/hyxb2024072
Citation: Yang Dan,Fu Quanyou,Han Zhengbing, et al. Effects of plankton productivity/community structure on BP/MCP carbon storage and their interdecadal variations in a typical Antarctic waters[J]. Haiyang Xuebao,2024, 46(5):37–56 doi: 10.12284/hyxb2024072

Effects of plankton productivity/community structure on BP/MCP carbon storage and their interdecadal variations in a typical Antarctic waters

doi: 10.12284/hyxb2024072
  • Received Date: 2024-01-15
  • Rev Recd Date: 2024-03-26
  • Available Online: 2024-05-31
  • Publish Date: 2024-05-01
  • Utilizing the molecular biomarkers of organic matter in marine sediments from the Antarctic Peninsula (D1-7) and adjacent waters of the South Orkney Islands (D5-6), the ecological relationships implicit in the reconstructed variations of planktonic productivity and population structure are examined in relation to the Biological Pump (BP)/Microbial Carbon Pump (MCP), as well as the efficiency of marine carbon sinks and storage. Over the past century, a series of molecular biomarkers in sediment cores has exhibited significant changes, reflecting substantial spatiotemporal evolution in upper ocean planktonic productivity/community structure and sedimentary carbon reservoirs. These changes are indeed linked to global climate variability. The research findings are as follows: (1) Based on the characteristics of molecular composition and chromatographic peak patterns of biomarker compounds, as well as parameters such as Main Peak Carbon (MH), Light Hydrocarbons/Heavy Hydrocarbons (L/H), Bacterial-Algal Ratio (nC15 + nC17 + nC19), Large Phytoplankton Ratio (nC21 + nC23 + nC25), and carbon preference index (CPI), it is evident that the primary source of sedimentary carbon is marine-derived organic carbon. Marine organisms serve as natural carbon sinks for carbon fixation and storage. (2) The sediments from the D5-6 region exhibit high organic matter enrichment, primarily influenced by factors such as higher surface water productivity, higher sedimentation rates (average of 0.19 cm/a), shallower water depths (385 m), and a reducing sedimentary environment (average Pr/Ph value of 0.95). These conditions favor the transport of Particulate Organic Carbon (POC) from the ocean surface to the deep sea via the Biological Pump (BP) process, facilitating rapid burial and storage. In contrast, sediments from the D1-7 region, characterized by greater water depths (1 100 m) and lower sedimentation rates (0.07 cm/a, experience degradation of carbonaceous compounds during sedimentation processes and subsequent oxidative degradation in an oxic environment (average Pr/Ph value of 1.22). Both processes are unfavorable for carbon sequestration in sediments. However, the control factor determining carbon preservation in sediments may predominantly be sedimentation rate. (3) Over the past century, the total abundance of zooplankton, primary productivity of phytoplankton, and biomass of diatoms and dinoflagellates in the waters near the Antarctic Peninsula and the South Orkney Islands have shown an increasing trend, while the biomass and proportion of coccolithophores have decreased (particularly evident near the Antarctic Peninsula). This indicates a declining trend in the effectiveness of the calcium carbonate pump while the silica pump dominated by diatoms is strengthening. The relative strengths of these two processes largely determine the structure and efficiency of the biological pump, as well as the proportion of organic and inorganic carbon transported to marine sediments. (4) The trends in molecular biomarker variations in the two sediment cores show certain comparability overall, with distinct stages. Following interdecadal shifts (since 1972), the waters near the South Orkney Islands experienced a significant increase in zooplankton abundance from a depth of 5-6 cm beginning in 1982. Particularly, during the periods of 1997 and 2012, zooplankton abundance witnessed a dramatic increase, indicating rapid changes in planktonic community structure under the backdrop of global warming. Variations in both decreased primary productivity of phytoplankton and increased zooplankton abundance contribute to significant uncertainties in the changes in the strength of the biological pump (enhancement/weakening). (5) In contrast, over the past century, the productivity of phytoplankton/diatoms and dinoflagellates in the waters near the Antarctic Peninsula has gradually increased, while microbial productivity/ancient archaeal biomass has decreased. This suggests a weakening of microbial carbon sequestration intensity, indicating a decrease in the efficiency of the microbial carbon pump (MCP). This underscores the crucial role of global warming in the fluctuations of phytoplankton productivity/biomass in marine waters. The biomass and composition characteristics of planktonic communities directly affect the transport of organic carbon in the upper water column and the efficiency of carbon sequestration in the MCP. As the largest carbon sink in the global ocean, the carbon sequestration capacity of the Antarctic may be diminishing.
  • loading
  • [1]
    Chisholm S W. Stirring times in the southern Ocean[J]. Nature, 2000, 407(6805): 685−686. doi: 10.1038/35037696
    [2]
    Raven J A, Falkowski P G. Oceanic sinks for atmospheric CO2[J]. Plant, Cell & Environment, 1999, 22(6): 741−755.
    [3]
    Jiao Nianzhi, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593−599. doi: 10.1038/nrmicro2386
    [4]
    Orr J C, Maier-Reimer E, Mikolajewicz U, et al. Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models[J]. Global Biogeochemical Cycles, 2001, 15(1): 43−60. doi: 10.1029/2000GB001273
    [5]
    Munr D R, Lovenduski N S, Takahashi T, et al. Recent evidence for a Strengthening CO2 Sink in the Southern Ocean from Carbonate System measurements in the Drake Passage (2002—2015)[J]. Geophysical Research Letters, 2015, 42(18): 7623−7630. doi: 10.1002/2015GL065194
    [6]
    Landschützer P, Gruber N, Haumann F A, et al. The reinvigoration of the Southern Ocean carbon sink[J]. Science, 2015, 349(6253): 1221−1224. doi: 10.1126/science.aab2620
    [7]
    Chen Liqi, Gao Zhongyong, Yang Xulin, et al. Comparison of airsea fluxes of CO2 in the Southern Ocean and the western Arctic Ocean[J]. Acta Oceanologica Sinica, 2004, 23(4): 647−653.
    [8]
    Yang Dan, Zhang Haisheng, Han Zhengbing, et al. Biomarker records of D5-6 columns in the eastern Antarctic Peninsula waters: responses of planktonic communities and bio-pump structures to sea ice global warming in the past centenary[J]. Advances in Polar Science, 2021, 32(1): 28−41.
    [9]
    Wang Pinxian, Li Qianyu, Tian Jun, et al. Long-term cycles in the carbon reservoir of the Quaternary ocean: A perspective from the South China Sea[J]. National Science Review, 2014, 1(1): 119−143. doi: 10.1093/nsr/nwt028
    [10]
    马文涛, 修鹏, 于溢, 等. 南海溶解有机碳生产的定量评估[J]. 中国科学: 地球科学, 2022, 52(3): 559−573.

    Ma Wentao, Xiu Peng, Yu Yi, et al. Production of dissolved organic carbon in the South China Sea: A modeling study[J]. Science China Earth Sciences, 2022, 65(2): 351−364.
    [11]
    Zheng Yiling, Ma Wentao, Wang Yuntao, et al. Modeling dissolved organic carbon exchange across major straits and shelf breaks in the South China Sea[J]. Progress in Oceanography, 2023, 210: 102928. doi: 10.1016/j.pocean.2022.102928
    [12]
    Werne J P, Hollander D J, Lyons T W, et al. Climate-induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco Basin, Venezuela[J]. Paleoceanography, 2000, 15(1): 19−29. doi: 10.1029/1998PA000354
    [13]
    Zhao Meixun, Mercer J L, Eglinton G, et al. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa[J]. Organic Geochemistry, 2006, 37(1): 72−97. doi: 10.1016/j.orggeochem.2005.08.022
    [14]
    Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: A review of recent research developments[J]. Organic Geochemistry, 1998, 29(5/7): 1163−1179.
    [15]
    Zhang Chuanlun, Dang Hongyue, Azam F, et al. Evolving paradigms in biological carbon cycling in the ocean[J]. National Science Review, 2018, 5(4): 480−499.
    [16]
    Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine Archaea during a mid-Cretaceous Oceanic anoxic event[J]. Science, 2001, 293(5527): 92−95. doi: 10.1126/science.1058424
    [17]
    Schouten S, Hopmans E C, Forster A, et al. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids[J]. Geology, 2003, 31(12): 1069−1072. doi: 10.1130/G19876.1
    [18]
    Jenkyns H C, Schouten-Huibers L, Schouten S, et al. Warm Middle Jurassic—Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean[J]. Climate of the Past, 2012, 8(1): 215−226. doi: 10.5194/cp-8-215-2012
    [19]
    Schouten S, Eldrett J, Greenwood D R, et al. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids[J]. Geology, 2008, 36(2): 147−150. doi: 10.1130/G24332A.1
    [20]
    Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J]. Environmental Microbiology, 2006, 8(4): 648−657. doi: 10.1111/j.1462-2920.2005.00941.x
    [21]
    焦念志, 张传伦, 李超, 等. 海洋微型生物碳泵储碳机制及气候效应[J]. 中国科学: 地球科学, 2013, 43(1): 1−18. doi: 10.1360/zd-2013-43-1-1

    Jiao Nianzhi, Zhang Chuanlun, Li Chao, et al. Controlling mechanisms and climate effects of microbial carbon pump in the ocean[J]. Scientia Sinica Terrae, 2013, 43(1): 1−18. doi: 10.1360/zd-2013-43-1-1
    [22]
    Reinardy B T I, Pudsey C J, Hillenbrand C D, et al. Contrasting sources for glacial and interglacial shelf sediments used to interpret changing ice flow directions in the Larsen Basin, Northern Antarctic Peninsula[J]. Marine Geology, 2009, 266(1/4): 156−171.
    [23]
    Sandroni S, Talarico F M. The record of Miocene climatic events in AND-2A drill core (Antarctica): Insights from provenance analyses of basement clasts[J]. Global and Planetary Change, 2011, 75(1/2): 31−46.
    [24]
    Talarico F M, McKay R M, Powell R D, et al. Late Cenozoic oscillations of Antarctic ice sheets revealed by provenance of basement clasts and grain detrital modes in ANDRILL core AND-1B[J]. Global and Planetary Change, 2012, 96-97: 23−40. doi: 10.1016/j.gloplacha.2009.12.002
    [25]
    Hernández-Molina F J, Larter R D, Rebesco M, et al. Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: Stratigraphic evidence from a contourite sedimentary tail[J]. Marine Geology, 2006, 228(1/4): 93−116.
    [26]
    赵美训, 丁杨, 于蒙. 中国边缘海沉积有机质来源及其碳汇意义[J]. 中国海洋大学学报(自然科学版), 2017, 47(9): 70−76.

    Zhao Meixun, Ding Yang, Yu Meng. Sources of sedimentary organic matter in China marginal sea surface sediments and implications of carbon sink[J]. Periodical of Ocean University of China, 2017, 47(9): 70−76.
    [27]
    Jiang Haibo, Hutchins D A, Ma Wentao, et al. Natural ocean iron fertilization and climate variability over geological periods[J]. Global Change Biology, 2023, 29(24): 6856−6866. doi: 10.1111/gcb.16990
    [28]
    Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7/8): 745−749.
    [29]
    Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34(2): 261−289. doi: 10.1016/S0146-6380(02)00168-7
    [30]
    房吉敦, 吴丰昌, 熊永强, 等. 滇池湖泊沉积物中游离类脂物的有机地球化学特征[J]. 地球化学, 2009, 38(1): 96−104. doi: 10.3321/j.issn:0379-1726.2009.01.011

    Fang Jidun, Wu Fengchang, Xiong Yongqiang, et al. Organic geochemical characteristics of free lipids in Lake Dianchi sediments[J]. Geochimica, 2009, 38(1): 96−104. doi: 10.3321/j.issn:0379-1726.2009.01.011
    [31]
    Meyers P A, Ishiwatari R. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry, 1993, 20(7): 867−900. doi: 10.1016/0146-6380(93)90100-P
    [32]
    Schefuß E, Ratmeyer V, Stuut J B W, et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J]. Geochimica et Cosmochimica Acta, 2003, 67(10): 1757−1767. doi: 10.1016/S0016-7037(02)01414-X
    [33]
    李文宝. 南大洋南塔斯曼海2 Ma以来的古海洋学记录及高、低纬海域的对比[D]. 上海: 同济大学, 2010.

    Li Wenbao. Paleooceanographic records of the Southern Tasman Sea in the Southern Ocean since 2 Ma and comparison between high and low latitude seas[D]. Shanghai: Tongji University, 2010.
    [34]
    王光宇, 陈邦彦, 张国祯, 等. 南极布兰斯菲尔德海区地质: “海洋四号”船南极地质地球物理科学考察成果[M]. 北京: 地质出版社, 1996.

    Wang Guangyu, Chen Bangyan, Zhang Guozhen, et al. Geology of the Bransfield Sea Area in Antarctica: Results of the Antarctic geological and geophysical scientific investigation by the “Ocean 4” ship[M]. Beijing: Geology Press, 1996.
    [35]
    Galy V, France-Lanord C, Beyssac O, et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system[J]. Nature, 2007, 450(7168): 407−410. doi: 10.1038/nature06273
    [36]
    Hilton R G, Galy V, Gaillardet J, et al. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink[J]. Nature, 2015, 524(7563): 84−87. doi: 10.1038/nature14653
    [37]
    栾青杉, 孙坚强, 吴强, 等. 2010年夏南极半岛邻近海域的浮游植物群落[J]. 海洋科学进展, 2012, 30(4): 508−518. doi: 10.3969/j.issn.1671-6647.2012.04.006

    Luan Qingshan, Sun Jianqiang, Wu Qiang, et al. Phytoplankton community in adjoining water of the antarctic peninsula during austral summer 2010[J]. Advances in Marine Science, 2012, 30(4): 508−518. doi: 10.3969/j.issn.1671-6647.2012.04.006
    [38]
    Haven H L T, De Leeuw J W, Rullkötter J, et al. Restricted utility of the pristane/Phytane ratio as a palaeoenvironmental indicator[J]. Nature, 1987, 330(6149): 641−643. doi: 10.1038/330641a0
    [39]
    Evenick J C. Evaluating source rock organofacies and paleodepositional environments using bulk rock compositional data and pristane/phytane ratios[J]. Marine and Petroleum Geology, 2016, 78: 507−515. doi: 10.1016/j.marpetgeo.2016.10.008
    [40]
    Peters K E, Walters C C, Moldowan J M. The Biomarkers and Isotopes in Petroleum Systems and Earth History[M]. New York: Cambridge University Press, 2005.
    [41]
    杨群. 分子古生物学原理与方法[M]. 北京: 科学出版社, 2003.

    Yang Qun. Principles and methods of molecular paleobiology [M]. Beijing: Science Press, 2003.
    [42]
    Vandewiele S, Cowie G, Soetaert K, et al. Amino acid biogeochemistry and organic matter degradation state across the Pakistan margin oxygen minimum zone[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(6/7): 376−392.
    [43]
    Siegenthaler U, Sarmiento J L. Atmospheric carbon dioxide and the ocean[J]. Nature, 1993, 365(6442): 119−125. doi: 10.1038/365119a0
    [44]
    Fasham M J R, Balino B M, Bowles M C, et al. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study(JGOFS)[J]. AMBIO, 2001, 10: 4−31.
    [45]
    Schubert C J, Villanueva J, Calvert S E, et al. Stable phytoplankton community structure in the Arabian Sea over the past 200, 000 years[J]. Nature, 1998, 394(6693): 563−566. doi: 10.1038/29047
    [46]
    Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr[J]. Paleoceanography, 2004, 19(1): PA1016.
    [47]
    Barrett S M, Volkman J K, Dunstan G A, et al. Sterols of 14 species of marine diatoms (Bacillariophyta)[J]. Journal of Phycology, 1995, 31(3): 360−369. doi: 10.1111/j.0022-3646.1995.00360.x
    [48]
    Volkman J K, Farrington J W, Gagosian R B. Marine and terrigenous lipids in coastal sediments from the Peru upwelling region at 15°S: Sterols and triterpene alcohols[J]. Organic Geochemistry, 1987, 11(6): 463−477. doi: 10.1016/0146-6380(87)90003-9
    [49]
    Honjo S, Manganini S J, Krishfield R A, et al. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983[J]. Progress in Oceanography, 2008, 76(3): 217−285. doi: 10.1016/j.pocean.2007.11.003
    [50]
    朱根海, 王春生. 南极南设得兰群岛邻近水域表层微小型浮游藻类的分布特征[J]. 生态学报, 1993, 13(4): 383−386.

    Zhu Genhai, Wang Chunsheng. Distribution characteristics of planktonic nano-and microalgae in adjacent surface waters off the South Shetland Islands, Antarctica[J]. Acta Ecologica Sinica, 1993, 13(4): 383−386.
    [51]
    Murphy E J, Watkins J L, Trathan P N, et al. Spatial and Temporal Operation of the Scotia Sea Ecosystem[M]. Antarctic Ecosystems. John Wiley & Sons, Ltd, 2012: 160−212.
    [52]
    陈建芳. 南海沉降颗粒物的生物地球化学过程及其在古环境研究中的意义[D]. 上海: 同济大学, 2005.

    Chen Jianfang. Biogeochemistry of settling particles in the South China Sea and its significance for paleo-environment studies[D]. Shanghai: Tongji University, 2005.
    [53]
    Volk T, Hoffert M I. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[M]//Sundquist E T, Broecker W S. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington: American Geophysical Union, 1985: 99−110.
    [54]
    Passow U, Alldredge A L. Aggregation of a diatom bloom in a mesocosm: The role of transparent exopolymer particles (TEP)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1995, 42(1): 99−109. doi: 10.1016/0967-0645(95)00006-C
    [55]
    Holligan P M, Fernández E, Aiken J, et al. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic[J]. Global Biogeochemical Cycles, 1993, 7(4): 879−900. doi: 10.1029/93GB01731
    [56]
    Robertson J E, Robinson C, Turner D R, et al. The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(2): 297−314. doi: 10.1016/0967-0637(94)90005-1
    [57]
    Le Quéré C, Orr J C, Monfray P, et al. Interannual variability of the oceanic sink of CO2 from 1979 through 1997[J]. Global Biogeochemical Cycles, 2000, 14(4): 1247−1265. doi: 10.1029/1999GB900049
    [58]
    张凡, 高众勇, 孙恒. 南极普里兹湾碳循环研究进展[J]. 极地研究, 2013, 25(3): 284−293.

    Zhang Fan, Gao Zhongyong, Sun Heng. Advances in carbon-cycle research for Prydz bay, the antarctica[J]. Advances in Polar Science, 2013, 25(3): 284−293.
    [59]
    Prézelin B B, Hofmann E E, Mengelt C, et al. The linkage between Upper Circumpolar Deep Water (UCDW) and phytoplankton assemblages on the west Antarctic Peninsula continental shelf[J]. Marine Research, 2000, 58(2): 165−202. doi: 10.1357/002224000321511133
    [60]
    Buesseler K O, McDonnell A M P, Schofield O M E, et al. High particle export over the continental shelf of the west Antarctic Peninsula[J]. Geophysical Research Letters, 2010, 37(22): L22606.
    [61]
    俞建銮, 李瑞香, 黄凤鹏. 南极长城湾浮游植物生态的初步研究[J]. 极地研究, 1992, 4(4): 34−39.

    Yu Jianluan, Li Ruixiang, Huang Fengpeng. A preliminary study on the ecology of the phytoplankton in Great Wall Bay, Antarctic[J]. Antarctic Research, 1992, 4(4): 34−39.
    [62]
    王春娟, 陈志华, 李传顺, 等. 南极半岛周边海域表层沉积物粒度分布特征及其环境指示意义[J]. 极地研究, 2014, 26(1): 128−138.

    Wang Chunjuan, Chen Zhihua, Li Chuanshun et al. Distribution of surface sediments in the sea area sorrounding the Antarctic peninsula and their sedimentary environmental significance[J]. Chinese Journal of Polar Research, 2014, 26(1): 128−138.
    [63]
    Dugdale R, Wilkerson F. Sources and fates of silicon in the ocean: The role of diatoms in the climate and glacial cycles[J]. Scientia Marina, 2001, 65: 141−152. doi: 10.3989/scimar.2001.65s2141
    [64]
    Higginson M J, Altabet M A. Initial test of the silicic acid leakage hypothesis using sedimentary biomarkers[J]. Geophysical Research Letters, 2004, 31(18): L18303, doi: 10.1029/2004GL020511
    [65]
    Matsumoto K, Sarmiento J, Brzezinski M. Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO2[J]. Global Biogeochemical Cycles, 2002, 16.
    [66]
    Putland J, Sutton T. Survey of larval Euphausia superba lipid content along the western Antarctic Peninsula during late autumn 2006[J]. Polar Science, 2011, 5(3): 383−389. doi: 10.1016/j.polar.2011.01.001
    [67]
    朱国平, 冯春雷, 吴强, 等. 南极磷虾调查CPUE指数变动的影响因素初步分析[J]. 海洋渔业, 2010, 32(4): 368−373. doi: 10.3969/j.issn.1004-2490.2010.04.004

    Zhu Guoping, Feng Chunlei, Wu Qiang, et al. Preliminary analysis on factors impacting CPUE index variations in Antarctic krill survey[J]. Marine Fisheries, 2010, 32(4): 368−373. doi: 10.3969/j.issn.1004-2490.2010.04.004
    [68]
    Reiss C S, Cossio A M, Loeb V, et al. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996-2006[J]. ICES Journal of Marine Science, 2008, 65(4): 497−508. doi: 10.1093/icesjms/fsn033
    [69]
    朱国平. 南极磷虾种群生物学研究进展I-年龄、生长与死亡[J]. 水生生物学报, 2011, 35(5): 862−868.

    Zhu Guoping. Population biology of Antarctic krill euphausia superb. I - age, growth and mortality[J]. Acta Hydrobiologica Sinica, 2011, 35(5): 862−868.
    [70]
    左涛, 陈丹, 赵宪勇, 等. 南极半岛邻近海域南极大磷虾(Euphausia superba Dana)的数量组成和分布[J]. 渔业科学进展, 2015, 36(2): 1−10. doi: 10.11758/yykxjz.20150201

    Zuo Tao, Chen Dan, Zhao Xianyong, et al. The abundance, Distribution, and Stage-specific compositions of Euphausia superba in the water around the Antarctic Peninsula[J]. Progress in Fishery Sciences, 2015, 36(2): 1−10. doi: 10.11758/yykxjz.20150201
    [71]
    樊伟, 伍玉梅, 陈雪忠, 等. 南极磷虾的时空分布及遥感环境监测研究进展[J]. 海洋渔业, 2010, 32(1): 95−101. doi: 10.3969/j.issn.1004-2490.2010.01.014

    Fan Wei, Wu Yumei, Chen Xuezhong, et al. Progress in spatio-temporal distribution of Antarctic krill and environment survey of remote sensing[J]. Marine Fisheries, 2010, 32(1): 95−101. doi: 10.3969/j.issn.1004-2490.2010.01.014
    [72]
    Perissinotto R, Pakhomov E A. The trophic role of the tunicate Salpa thompsoni in the Antarctic marine ecosystem[J]. Journal of Marine Systems, 1998, 17(1/4): 361−374.
    [73]
    Atkinson A, Siegel V, Pakhomov E, et al. Long-term decline in krill stock and increase in salps within the Southern Ocean[J]. Nature, 2004, 432(7013): 100−103. doi: 10.1038/nature02996
    [74]
    Catalán I A, Morales-Nin B, Company J B, et al. Environmental influences on zooplankton and micronekton distribution in the Bransfield Strait and adjacent Waters[J]. Polar Biology, 2008, 31(6): 691−707. doi: 10.1007/s00300-008-0408-1
    [75]
    Siegel V, Loeb V. Recruitment of Antarctic Krill Euphausia superba and possible causes for its variability[J]. Marine Ecology Progress Series, 1995, 123: 45−56. doi: 10.3354/meps123045
    [76]
    Pakhomov E A, Froneman P W, Perissinotto R. Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9/10): 1881−1907.
    [77]
    刘永芹. 磷虾和纽鳃樽种群生态学研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2012.

    Liu Yongqin. Studies on the population ecology of euphausiids and salps[D]. Qingdao: Chinese Academy of Sciences (Marine Research Institute), 2012.
    [78]
    Siegel V. Distribution and population dynamics of Euphausia superba: summary of recent findings[J]. Polar Biology, 2005, 29(1): 1−22. doi: 10.1007/s00300-005-0058-5
    [79]
    Mcbride M, Schram Stokke O, Renner A, et al. Antarctic krill Euphausia superba: spatial distribution, abundance, and management of fisheries in a changing climate[J]. Marine Ecology Progress Series, 2021, 668: 185−214. doi: 10.3354/meps13705
    [80]
    Loeb V, Siegel V, Holm-Hansen O, et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web[J]. Nature, 1997, 387(6636): 897−900. doi: 10.1038/43174
    [81]
    Walsh J J, Dieterle D A, Lenes J. A numerical analysis of carbon dynamics of the Southern Ocean phytoplankton community: the roles of light and grazing in effecting both sequestration of atmospheric CO2 and food availability to larval krill[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(1): 1−48. doi: 10.1016/S0967-0637(00)00032-7
    [82]
    焦念志. 海洋微型生物生态学[M]. 北京: 科学出版社, 2006.

    Jiao Nianzhi. Marine Microbial Ecology[M]. Beijing: Science Press, 2006.
    [83]
    陈文深, 于培松, 韩喜彬, 等. 南极罗斯海表层沉积物GDGTs含量分布及其环境意义[J]. 海洋学研究, 2019, 37(1): 30−39. doi: 10.3969/j.issn.1001-909X.2019.01.005

    Chen Wenshen, Yu Peisong, Han Xibin, et al. Contents and distribution of GDGTs in surface sediments of Ross Sea, Antarctic and their environmental significances[J]. Journal of Marine Sciences, 2019, 37(1): 30−39. doi: 10.3969/j.issn.1001-909X.2019.01.005
    [84]
    Schouten S, Hopmans E C, Damsté J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J]. Organic Geochemistry, 2013, 54: 19−61. doi: 10.1016/j.orggeochem.2012.09.006
    [85]
    DeLong E F, Wu K Y, Prézelin B B, et al. High abundance of Archaea in Antarctic marine picoplankton[J]. Nature, 1994, 371(6499): 695−697. doi: 10.1038/371695a0
    [86]
    Cavicchioli R. Cold-adapted archaea[J]. Nature Reviews Microbiology, 2006, 4(5): 331−343. doi: 10.1038/nrmicro1390
    [87]
    Herndl G J, Reinthaler T, Teira E, et al. Contribution of Archaea to total Prokaryotic production in the deep Atlantic Ocean[J]. Applied and Environmental Microbiology, 2005, 71(5): 2303−2309. doi: 10.1128/AEM.71.5.2303-2309.2005
    [88]
    Zhang Yao, Sintes E, Chen Jianing, et al. Role of mesoscale cyclonic eddies in the distribution and activity of Archaea and Bacteria in the South China Sea[J]. Aquatic Microbial Ecology, 2009, 56(1): 65−79.
    [89]
    Jiao N, Azam F. Microbial carbon pump and its significance for carbon sequestration in the ocean[J]. Microbial Carbon Pump in the Ocean, 2011, 10: 43−45.
    [90]
    Jiao Nianzhi, Cai Ruanhong, Zheng Qiang, et al. Unveiling the enigma of refractory carbon in the ocean[J]. National Science Review, 2018, 5(4): 459−463. doi: 10.1093/nsr/nwy020
    [91]
    Koga Y, Akagawa-Matsushita M, Ohga M, et al. Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens[J]. Systematic and Applied Microbiology, 1993, 16(3): 342−351. doi: 10.1016/S0723-2020(11)80264-X
    [92]
    Bauersachs T, Weidenbach K, Schmitz R A, et al. Distribution of glycerol ether lipids in halophilic, methanogenic and hyperthermophilic archaea[J]. Organic Geochemistry, 2015, 83−84: 101−108. doi: 10.1016/j.orggeochem.2015.03.009
    [93]
    Damsté J S S, Strous M, Rijpstra W I C, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J]. Nature, 2002, 419(6908): 708−712. doi: 10.1038/nature01128
    [94]
    Schouten S, Hopmans E C, Baas M, et al. Intact membrane lipids of “Candidatus Nitrosopumilus maritimus” a cultivated representative of the cosmopolitan mesophilic Group I crenarchaeota[J]. Applied and Environmental Microbiology, 2008, 74(8): 2433−2440. doi: 10.1128/AEM.01709-07
    [95]
    Pitcher A, Hopmans E C, Mosier A C, et al. Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing Archaea enriched from marine and estuarine sediments[J]. Applied and Environmental Microbiology, 2011, 77(10): 3468−3477. doi: 10.1128/AEM.02758-10
    [96]
    Pitcher A, Schouten S, Damsté J S S. In situ production of crenarchaeol in two california hot springs[J]. Applied and Environmental Microbiology, 2009, 75(13): 4443−4451. doi: 10.1128/AEM.02591-08
    [97]
    Massana R, Murray A E, Preston C M, et al. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel[J]. Applied and Environmental Microbiology, 1997, 63(1): 50−56. doi: 10.1128/aem.63.1.50-56.1997
    [98]
    Schwalbach M S, Tripp H J, Steindler L, et al. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity[J]. Environmental Microbiology, 2010, 12(2): 490−500. doi: 10.1111/j.1462-2920.2009.02092.x
    [99]
    Blaga C I, Reichart G J, Heiri O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect[J]. Journal of Paleolimnology, 2009, 41(3): 523−540. doi: 10.1007/s10933-008-9242-2
    [100]
    Zimmerman A R, Canuel E A. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition[J]. Marine Chemistry, 2000, 69(1/2): 117−137.
    [101]
    Zonneveld K A F, Versteegh G J M, Kasten S, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record[J]. Biogeosciences, 2010, 7(2): 483−511. doi: 10.5194/bg-7-483-2010
    [102]
    Masqué P, Isla E, Sanchez-Cabeza J A, et al. Sediment accumulation rates and carbon fluxes to bottom sediments at the Western Bransfield Strait (Antarctica)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(4/5): 921−933.
    [103]
    Boyd P W, Trull T W. Understanding the export of biogenic particles in oceanic waters: Is there consensus?[J]. Progress in Oceanography, 2007, 72(4): 276−312. doi: 10.1016/j.pocean.2006.10.007
    [104]
    Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1075−1090. doi: 10.1016/0016-7037(79)90095-4
    [105]
    Roberts S J, Hodgson D A, Bentley M J, et al. The Holocene history of George VI Ice Shelf, Antarctic Peninsula from clast—provenance analysis of epishelf lake sediments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 259(2/3): 258−283.
    [106]
    Licht K J, Lederer J R, Jeffrey Swope R. Provenance of LGM glacial till (sand fraction) across the Ross embayment, Antarctica[J]. Quaternary Science Reviews, 2005, 24(12): 1499−1520.
    [107]
    Arrigo K R, Robinson D H, Worthen D L, et al. Phytoplankton community Structure and the drawdown of nutrients and CO2 in the southern ocean[J]. Science, 1999, 283(5400): 365−367. doi: 10.1126/science.283.5400.365
    [108]
    Wassmann P, Vernet M, Mitchell B G, et al. Mass sedimentation of Phaeocystis pouchetii in the Barents Sea[J]. Marine Ecology Progress Series, 1990, 66(1/2): 183−195.
    [109]
    Smith W O Jr, Codispoti L A, Nelson D M, et al. Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle[J]. Nature, 1991, 352(6335): 514−516. doi: 10.1038/352514a0
    [110]
    DiTullio G R, Grebmeier J M, Arrigo K R, et al. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica[J]. Nature, 2000, 404(6778): 595−598. doi: 10.1038/35007061
    [111]
    Montes-Hugo M A, Vernet M, Martinson D, et al. Variability on phytoplankton size structure in the western Antarctic Peninsula (1997-2006)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(18/19): 2106−2117.
    [112]
    Chierici M, Fransson A, Turner D R, et al. Variability in pH, fCO2, Oxygen and flux of CO2 in the surface water along a transect in the Atlantic sector of the Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2004, 51(22/24): 2773−2787.
    [113]
    Turner D R, Owens N J P. A biogeochemical study in the Bellingshausen Sea: Overview of the STERNA 1992 expedition[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1995, 42(4): 907−932.
    [114]
    Tanoue E. Detection of dissolved protein molecules in oceanic waters[J]. Marine Chemistry, 1995, 51(3): 239−252. doi: 10.1016/0304-4203(95)00061-5
    [115]
    Mccarthy M D, Hedges J I, Benner R, et al. Major bacterial contribution to marine dissolved organic nitrogen[J]. Science, 1998, 281(5374): 231−234. doi: 10.1126/science.281.5374.231
    [116]
    Ogawa H, Amagai Y, Koike I, et al. Production of refractory dissolved organic matter by bacteria[J]. Science, 2001, 292(5518): 917−920. doi: 10.1126/science.1057627
    [117]
    Nelson N B, Carlson C A, Steinberg D K. Production of chromophoric dissolved organic matter by Sargasso Sea microbes[J]. Marine Chemistry, 2004, 89(1/4): 273−287.
    [118]
    Zhang Yuan, Wallace J M, Battisti D S. ENSO-like interdecadal variability: 1900-93[J]. Journal of Climate, 1997, 10(5): 1004−1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
    [119]
    Mantua N J, Hare S R, Zhang Yuan, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1069−1080. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
    [120]
    Barnett T P, Pierce D W, Latif M, et al. Interdecadal interactions between the tropics and midlatitudes in the Pacific basin[J]. Geophysical Research Letters, 1999, 26(5): 615−618. doi: 10.1029/1999GL900042
    [121]
    李江萍, 孙即霖. 南太平洋大气和海洋年代际变化与冷空气关系的研究[J]. 海洋湖沼通报, 2004(4): 10−16. doi: 10.3969/j.issn.1003-6482.2004.04.004

    Li Jiangping, Sun Jilin. Interdecadal variations in the southern subtropical Pacific and the variation of temperature over the Mid-Southern Pacific[J]. Transactions of Oceanology and Limnology, 2004(4): 10−16. doi: 10.3969/j.issn.1003-6482.2004.04.004
    [122]
    王绍武, 罗勇, 赵宗慈, 等. 北半球变暖比南半球激烈[J]. 气候变化研究进展, 2015, 11(1): 76−78.

    Wang Shaowu, Luo Yong, Zhao Zongci, et al. The warming is stronger in the northern hemisphere than in the southern hemisphere[J]. Progressus Inquisitiones de Mutatione Climatis, 2015, 11(1): 76−78.
    [123]
    陈立奇. 极地系统科学考察——大科学系统工程管理探索[J]. 中国工程科学, 2004, 6(2): 1−7. doi: 10.3969/j.issn.1009-1742.2004.02.001

    Chen Liqi. A review of development and management of systemic engineering for a giant science expedition in the Arctic and Antarctic system[J]. Engineering Science, 2004, 6(2): 1−7. doi: 10.3969/j.issn.1009-1742.2004.02.001
    [124]
    卞林根, 林学椿. 南极涛动和南极绕极波的年代际变化[J]. 大气科学, 2009, 33(2): 251−260. doi: 10.3878/j.issn.1006-9895.2009.02.05

    Bian Lingen, Lin Xuechun. Interdecadal change of the Antarctic oscillation and the Antarctic circumpolar wave[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(2): 251−260. doi: 10.3878/j.issn.1006-9895.2009.02.05
    [125]
    Norton J G, Npaa S F S C, Al E. The 1982-83 El Nino Event Off Baja and Alta California and Its Ocean Climate Context[M]. United States: Government publishing office, 2013.
    [126]
    林学椿. 70年代末至80年代初气候跃变及其影响[M]//中国科学院大气物理研究. 东亚季风和中国暴雨. 北京: 气象出版社, 1998: 240−249.

    Lin Xuechun. Climate transition from the late 1970s to the early 1980s and its impact[M]//Atmospheric Physics Research, Chinese Academy of Sciences. East Asian Monsoon and Heavy Rains in China. Beijing: Meteorological Press, 1998: 240−249.
    [127]
    Hare S R, Mantua N J. Empirical evidence for North Pacific regime shifts in 1977 and 1989[J]. Progress in Oceanography, 2000, 47(2/4): 103−145.
    [128]
    Stukel M R, Landry M R, Benitez-Nelson C R, et al. Trophic cycling and carbon export relationships in the California Current Ecosystem[J]. Limnology and Oceanography, 2011, 56(5): 1866−1878.
    [129]
    Stukel M R, Landry M R. Contribution of picophytoplankton to carbon export in the equatorial Pacific: A reassessment of food web flux inferences from inverse models[J]. Limnology and Oceanography, 2010, 55(6): 2669−2685.
    [130]
    Ducklow H W, Steinberg D K, Buesseler K O. Upper ocean carbon export and the biological pump[J]. Oceanography, 2001, 14(4): 50−58. doi: 10.5670/oceanog.2001.06
    [131]
    Atkinson A, Nicol S, Kawaguchi S, et al. Fitting Euphausia superba into Southern Ocean food-web models: a review of data sources and their limitations[J]. Ccamlr Science, 2012, 19: 219−245.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (111) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return