Citation: | Zhao Ruonan,Li Gang,He Yijun. Energy analysis of submesoscale processes in the Agulhas current system[J]. Haiyang Xuebao,2024, 46(1):27–38 doi: 10.12284/hyxb2024070 |
[1] |
Bracco A, Liu Guangpeng, Sun Daoxun. Mesoscale-submesoscale interactions in the Gulf of Mexico: from oil dispersion to climate[J]. Chaos, Solitons & Fractals, 2019, 119: 63−72.
|
[2] |
Thomas L N, Taylor J R, Ferrari R, et al. Symmetric instability in the Gulf Stream[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 91: 96−110. doi: 10.1016/j.dsr2.2013.02.025
|
[3] |
McWilliams J C. Submesoscale currents in the ocean[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2189): 20160117.
|
[4] |
Gula J, Blacic T M, Todd R E. Submesoscale coherent vortices in the gulf stream[J]. Geophysical Research Letters, 2019, 46(5): 2704−2714. doi: 10.1029/2019GL081919
|
[5] |
郑瑞玺, 经志友, 罗士浩. 南海北部反气旋涡旋边缘的次中尺度动力过程分析[J]. 热带海洋学报, 2018, 37(3): 19−25.
Zheng Ruixi, Jing Zhiyou, Luo Shihao. Analysis of sub-mesoscale dynamic processes in the periphery of anticyclonic eddy in the northern South China Sea[J]. Journal of Tropical Oceanography, 2018, 37(3): 19−25.
|
[6] |
Cao Haijin, Jing Zhiyou, Fox-Kemper B, et al. Scale transition from geostrophic motions to internal waves in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9364−9383. doi: 10.1029/2019JC015575
|
[7] |
Zhang Zhiwei, Zhang Yuchen, Qiu Bo, et al. Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations[J]. Journal of Geophysical Research: Oceans, 2020, 125(2): e2019JC015404. doi: 10.1029/2019JC015404
|
[8] |
Dong Jihai, Fox-Kemper B, Zhang Hong, et al. The seasonality of submesoscale energy production, content, and cascade[J]. Geophysical Research Letters, 2020, 47(6): e2020GL087388. doi: 10.1029/2020GL087388
|
[9] |
罗士浩, 经志友, 闫桐, 等. 黑潮延伸体海域次中尺度过程的季节变化研究[J]. 热带海洋学报, 2021, 40(1): 1−11.
Luo Shihao, Jing Zhiyou, Yan Tong, et al. Seasonal variability of submesoscale flows in the Kuroshio Extension[J]. Journal of Tropical Oceanography, 2021, 40(1): 1−11.
|
[10] |
Mensa J A, Garraffo Z, Griffa A, et al. Seasonality of the submesoscale dynamics in the Gulf Stream region[J]. Ocean Dynamics, 2013, 63(8): 923−941. doi: 10.1007/s10236-013-0633-1
|
[11] |
Buckingham C E, Garabato A C N, Thompson A F, et al. Seasonality of submesoscale flows in the ocean surface boundary layer[J]. Geophysical Research Letters, 2016, 43(5): 2118−2126. doi: 10.1002/2016GL068009
|
[12] |
Dong Jihai, Zhong Jihai. The spatiotemporal features of submesoscale processes in the northeastern South China Sea[J]. Acta Oceanologica Sinica, 2018, 37(11): 8−18. doi: 10.1007/s13131-018-1277-2
|
[13] |
Haine T W N, Marshall J. Gravitational, symmetric, and baroclinic instability of the ocean mixed layer[J]. Journal of Physical Oceanography, 1998, 28(4): 634−658. doi: 10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2
|
[14] |
Su Zhan, Wang Jinbo, Klein P, et al. Ocean submesoscales as a key component of the global heat budget[J]. Nature Communications, 2018, 9(1): 775. doi: 10.1038/s41467-018-02983-w
|
[15] |
Beal L M, De Ruijter W P M, Biastoch A, et al. On the role of the Agulhas system in ocean circulation and climate[J]. Nature, 2011, 472(7344): 429−436. doi: 10.1038/nature09983
|
[16] |
Schubert R, Gula J, Biastoch A. Submesoscale flows impact Agulhas leakage in ocean simulations[J]. Communications Earth & Environment, 2021, 2(1): 197.
|
[17] |
Schubert R, Schwarzkopf F U, Baschek B, et al. Submesoscale impacts on mesoscale Agulhas dynamics[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(8): 2745−2767. doi: 10.1029/2019MS001724
|
[18] |
Schubert R, Gula J, Greatbatch R J, et al. The submesoscale kinetic energy cascade: mesoscale absorption of submesoscale mixed layer eddies and frontal downscale fluxes[J]. Journal of Physical Oceanography, 2020, 50(9): 2573−2589. doi: 10.1175/JPO-D-19-0311.1
|
[19] |
Capuano T A, Speich S, Carton X, et al. Mesoscale and submesoscale processes in the Southeast Atlantic and their impact on the regional thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2018, 123(3): 1937−1961. doi: 10.1002/2017JC013396
|
[20] |
Schubert R. The impact of submesoscale flows on mesoscale Agulhas dynamics[D]. Kiel: Christian-Albrechts-Universität zu Kiel, 2020.
|
[21] |
de Ruijter W P M, Biastoch A, Drijfhout S S, et al. Indian-Atlantic interocean exchange: dynamics, estimation and impact[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20885−20910. doi: 10.1029/1998JC900099
|
[22] |
Zhang Ruize, Sun Shantong, Chen Zhaohui, et al. Rapid 21st century weakening of the Agulhas current in a warming climate[J]. Geophysical Research Letters, 2023, 50(4): e2022GL102070. doi: 10.1029/2022GL102070
|
[23] |
Taylor J R, Thompson A F. Submesoscale dynamics in the upper ocean[J]. Annual Review of Fluid Mechanics, 2023, 55: 103−127. doi: 10.1146/annurev-fluid-031422-095147
|
[24] |
Torres H S, Klein P, Menemenlis D, et al. Partitioning ocean motions into balanced motions and internal gravity waves: a modeling study in anticipation of future space missions[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 8084−8105. doi: 10.1029/2018JC014438
|
[25] |
Qiu Bo, Chen Shuiming, Klein P, et al. Seasonality in transition scale from balanced to unbalanced motions in the world ocean[J]. Journal of Physical Oceanography, 2018, 48(3): 591−605. doi: 10.1175/JPO-D-17-0169.1
|
[26] |
Menemenlis D, Campin J M, Heimbach P, et al. ECCO2: high resolution global ocean and sea ice data synthesis[J]. Mercator Ocean Quarterly Newslettel, 2008, 31: 13−21.
|
[27] |
Zhang Zhiwei, Liu Yuelin, Qiu Bo, et al. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport[J]. Nature Communications, 2023, 14(1): 1335. doi: 10.1038/s41467-023-36991-2
|
[28] |
Chelton D B, Deszoeke R A, Schlax M G, et al. Geographical variability of the first baroclinic rossby radius of deformation[J]. Journal of Physical Oceanography, 1998, 28(3): 433−460. doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
|
[29] |
Jing Zhiyou, Fox-Kemper B, Cao Haijin, et al. Submesoscale fronts and their dynamical processes associated with symmetric instability in the Northwest Pacific Subtropical Ocean[J]. Journal of Physical Oceanography, 2021, 51(1): 83−100. doi: 10.1175/JPO-D-20-0076.1
|
[30] |
Zhang Zhiwei, Zhang Xincheng, Qiu Bo, et al. Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays[J]. Journal of Physical Oceanography, 2021, 51(1): 187−206. doi: 10.1175/JPO-D-20-0100.1
|
[31] |
Sullivan P P, McWilliams J C. Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer[J]. Journal of Fluid Mechanics, 2018, 837: 341−380. doi: 10.1017/jfm.2017.833
|
[32] |
Gula J, Molemaker M J, McWilliams J C. Submesoscale dynamics of a gulf stream frontal eddy in the South Atlantic Bight[J]. Journal of Physical Oceanography, 2016, 46(1): 305−325. doi: 10.1175/JPO-D-14-0258.1
|
[33] |
Hoskins B J. The role of potential vorticity in symmetric stability and instability[J]. Quarterly Journal of the Royal Meteorological Society, 1974, 100(425): 480−482. doi: 10.1002/qj.49710042520
|
[34] |
Thomas L N, Tandon A, Mahadevan A. Submesoscale processes and dynamics[M]//Hecht M W, Hasumi H. Ocean Modeling in an Eddying Regime. Washington: American Geophysical Union, 2013.
|
[35] |
Cao Haijin, Fox-Kemper B, Jing Zhiyou. Submesoscale eddies in the upper ocean of the Kuroshio Extension from high-resolution simulation: energy budget[J]. Journal of Physical Oceanography, 2021, 51(7): 2181−2201.
|
[36] |
张晓璐, 熊学军. 渤海夏季第一斜压罗斯贝变形半径的计算与分析[J]. 海洋科学进展, 2015, 33(3): 295−304. doi: 10.3969/j.issn.1671-6647.2015.03.003
Zhang Xiaolu, Xiong Xuejun. Calculation and analysis of the first Baroclinic Rossby deformation radius in summer in the Bohai Sea[J]. Advances in Marine Science, 2015, 33(3): 295−304. doi: 10.3969/j.issn.1671-6647.2015.03.003
|
[37] |
Capet X, McWilliams J C, Molemaker M J, et al. Mesoscale to submesoscale transition in the California current system. Part I: flow structure, eddy flux, and observational tests[J]. Journal of Physical Oceanography, 2008, 38(1): 29−43. doi: 10.1175/2007JPO3671.1
|
[38] |
Dong Jihai, Jing Zhiyou, Fox-Kemper B, et al. Effects of symmetric instability in the Kuroshio Extension region in winter[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2022, 202: 105142. doi: 10.1016/j.dsr2.2022.105142
|
[39] |
Taylor J R, Ferrari R. On the equilibration of a symmetrically unstable front via a secondary shear instability[J]. Journal of Fluid Mechanics, 2009, 622: 103−113. doi: 10.1017/S0022112008005272
|
[40] |
Callies J, Ferrari R, Klymak J M, et al. Seasonality in submesoscale turbulence[J]. Nature Communications, 2015, 6(1): 6862. doi: 10.1038/ncomms7862
|
[41] |
Rocha C B, Gille S T, Chereskin T K, et al. Seasonality of submesoscale dynamics in the Kuroshio Extension[J]. Geophysical Research Letters, 2016, 43(21): 11304−11311.
|