Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Li Jingjing,Shi Benwei,Peng Zhong, et al. Study on the influence of Typhoon “Muifa” on the macrobenthic community of tidal flat[J]. Haiyang Xuebao,2024, 46(7):29–40 doi: 10.12284/hyxb2024068
Citation: Li Jingjing,Shi Benwei,Peng Zhong, et al. Study on the influence of Typhoon “Muifa” on the macrobenthic community of tidal flat[J]. Haiyang Xuebao,2024, 46(7):29–40 doi: 10.12284/hyxb2024068

Study on the influence of Typhoon “Muifa” on the macrobenthic community of tidal flat

doi: 10.12284/hyxb2024068
  • Received Date: 2024-01-18
  • Rev Recd Date: 2024-03-22
  • Available Online: 2024-06-17
  • Publish Date: 2024-07-01
  • Typhoons can have serious impacts on tidal flat ecosystems, particularly on the composition and distribution of macrobenthic communities. However, there is a lack of field data during typhoons, and the understanding of how typhoons affect the ecosystem is still limited. Therefore, this study conducted hydrodynamic observations and synchronous sampling of macrobenthic organisms before, during, and after Typhoon “Muifa”in September 2022, along the salt marsh-mudflat transect in the Chongming Dongtan area of the Changjiang River estuary. The study found: (1) During Typhoon “Muifa”, the effective wave height in the salt marshes was 2−4 times that of normal weather, and the combined wave-current shear stress was 10 times higher. (2) Within a week after Typhoon “Muifa”, the species number, abundance, and biomass of macrobenthic organisms in the salt marshes were 1.9, 3.8, and 3.0 times higher than before the typhoon, respectively. The dominant species of the salt marsh (Ilyoplax deschampsi, Assiminea sp., Assiminea violacea, Corbicula fluminea) increased by one (Assiminea violacea) compared with that before the typhoon (Assiminea sp., Ilyoplax deschampsi, Corbicula fluminea), and the primary dominant species shifting from Assiminea sp. to Ilyoplax deschampsi. (3) Within a week after Typhoon “Muifa”, the indicators of species number, abundance, and biomass of macrobenthos in the salt marsh increased, while the abundance of macrobenthic organisms on the mudflats at the forefront of the salt marsh decreased. This is attributed to the macrobenthic organisms (Ilyoplax deschampsi, Assiminea sp., Corbicula fluminea) on the mudflats migrating rapidly to the relatively less hydrodynamically stressed salt marshes during the strong hydrodynamic stress caused by the typhoon. (4) Two weeks after Typhoon “Muifa”, the abundance of macrobenthos in salt marshes recovered. The results of this study indicate that salt marsh vegetation not only provides ecological services such as wave attenuation, flow reduction, and shoreline protection, but also serves as a refuge for macrobenthic organisms during typhoons.
  • loading
  • [1]
    Mei Wei, Xie Shangping, Primeau F, et al. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures[J]. Science Advances, 2015, 1(4): e1500014. doi: 10.1126/sciadv.1500014
    [2]
    Chen Xiaolong, Zhou Tianjun, Wu Peili, et al. Emergent constraints on future projections of the western North Pacific Subtropical High[J]. Nature Communications, 2020, 11(1): 2802. doi: 10.1038/s41467-020-16631-9
    [3]
    Wang Haili, Wang Chunzai. What caused the increase of tropical cyclones in the western North Pacific during the period of 2011–2020?[J]. Climate Dynamics, 2023, 60(1/2): 165−177.
    [4]
    Yin Jie, Yin Zhane, Xu Shiyuan. Composite risk assessment of typhoon-induced disaster for China’s coastal area[J]. Natural Hazards, 2013, 69(3): 1423−1434. doi: 10.1007/s11069-013-0755-2
    [5]
    Hawkes D D. Erosion of tidal flats near Georgetown, British Guiana[J]. Nature, 1962, 196(4850): 128−130. doi: 10.1038/196128a0
    [6]
    Xu Chao, Liu Weibo. Integrating a three-Level GIS framework and a graph model to Track, represent, and analyze the dynamic activities of tidal flats[J]. ISPRS International Journal of Geo-Information, 2021, 10(2): 61. doi: 10.3390/ijgi10020061
    [7]
    Egres A G, Martins C C, de Oliveira V M, et al. Effects of an experimental in situ diesel oil spill on the benthic community of unvegetated tidal flats in a subtropical estuary (Paranaguá Bay, Brazil)[J]. Marine Pollution Bulletin, 2012, 64(12): 2681−2691. doi: 10.1016/j.marpolbul.2012.10.007
    [8]
    Gao Shu, Du Yongfen, Xie Wenjing, et al. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines[J]. Science China Earth Sciences, 2014, 57(11): 2567−2586. doi: 10.1007/s11430-014-4954-9
    [9]
    Jung R, Adolph W, Ehlers M, et al. A multi-sensor approach for detecting the different land covers of tidal flats in the German Wadden Sea—A case study at Norderney[J]. Remote Sensing of Environment, 2015, 170: 188−202. doi: 10.1016/j.rse.2015.09.018
    [10]
    Hallberg R O. Metal distribution along a profile of an inter-tidal area[J]. Estuarine and Coastal Marine Science, 1974, 2(2): 153−170. doi: 10.1016/0302-3524(74)90037-1
    [11]
    Pilotto F, Harvey G L, Wharton G, et al. Simple large wood structures promote hydromorphological heterogeneity and benthic macroinvertebrate diversity in low-gradient rivers[J]. Aquatic Sciences, 2016, 78(4): 755−766. doi: 10.1007/s00027-016-0467-2
    [12]
    Nehls G, Tiedemann R. What determines the densities of feeding birds on tidal flats? A case study on dunlin, Calidris alpina, in the Wadden Sea[J]. Netherlands Journal of Sea Research, 1993, 31(4): 375−384. doi: 10.1016/0077-7579(93)90054-V
    [13]
    Zhou Zhichao, Meng Han, Liu Yang, et al. Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing[J]. Frontiers in Microbiology, 2017, 8: 2148. doi: 10.3389/fmicb.2017.02148
    [14]
    Pichler H A, Spach H L, Gray C A, et al. Environmental influences on resident and transient fishes across shallow estuarine beaches and tidal flats in a Brazilian World Heritage area[J]. Estuarine, Coastal and Shelf Science, 2015, 164: 482−492. doi: 10.1016/j.ecss.2015.07.041
    [15]
    Beukema J J. Biomass and species richness of the macro-benthic animals living on the tidal flats of the Dutch Wadden Sea[J]. Netherlands Journal of Sea Research, 1976, 10(2): 236−261. doi: 10.1016/0077-7579(76)90017-X
    [16]
    Li Haifu, Li Lifeng, Su Fangli, et al. Ecological stability evaluation of tidal flat in coastal estuary: a case study of Liaohe estuary wetland, China[J]. Ecological Indicators, 2021, 130: 108032. doi: 10.1016/j.ecolind.2021.108032
    [17]
    Zhang Rong, Chen Yongping, Chen Peixiong, et al. Impacts of tidal flat reclamation on suspended sediment dynamics in the tidal-dominated Wenzhou Coast, China[J]. Frontiers in Marine Science, 2023, 10: 1097177. doi: 10.3389/fmars.2023.1097177
    [18]
    Song Weiwei, Li Yi. Tidal flat microbial communities between the Huaihe estuary and Yangtze River estuary[J]. Environmental Research, 2023, 238: 117141. doi: 10.1016/j.envres.2023.117141
    [19]
    Covich A P, Palmer M A, Crowl T A. The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling[J]. BioScience, 1999, 49(2): 119−127. doi: 10.2307/1313537
    [20]
    Devine J A, Vanni M J. Spatial and seasonal variation in nutrient excretion by benthic invertebrates in a eutrophic reservoir[J]. Freshwater Biology, 2002, 47(6): 1107−1121. doi: 10.1046/j.1365-2427.2002.00843.x
    [21]
    Ostendorp W, Hofmann H, Teufel L, et al. Effects of a retaining wall and an artificial embankment on nearshore littoral habitats and biota in a large Alpine lake[J]. Hydrobiologia, 2020, 847(2): 365−389. doi: 10.1007/s10750-019-04099-8
    [22]
    Cozzoli F, Gjoni V, Del Pasqua M, et al. A process based model of cohesive sediment resuspension under bioturbators’ influence[J]. Science of the Total Environment, 2019, 670: 18−30. doi: 10.1016/j.scitotenv.2019.03.085
    [23]
    Patrick C J, Yeager L, Armitage A R, et al. A system level analysis of coastal ecosystem responses to hurricane impacts[J]. Estuaries and Coasts, 2020, 43(5): 943−959. doi: 10.1007/s12237-019-00690-3
    [24]
    Fan Daidu, Guo Yanxia, Wang Ping, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: with an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26(4): 517−538. doi: 10.1016/j.csr.2005.12.011
    [25]
    Corte G N, Schlacher T A, Checon H H, et al. Storm effects on intertidal invertebrates: increased beta diversity of few individuals and species[J]. PeerJ, 2017, 5: e3360. doi: 10.7717/peerj.3360
    [26]
    Shi Benwei, Pratolongo P D, Du Yongfen, et al. Influence of macrobenthos (Meretrix meretrix Linnaeus) on erosion‐accretion processes in intertidal flats: a case study from a cultivation zone[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(1): e2019JG005345. doi: 10.1029/2019JG005345
    [27]
    Escapa M, Minkoff D R, Perillo G M E, et al. Direct and indirect effects of burrowing crab Chasmagnathus granulatus activities on erosion of southwest Atlantic Sarcocornia‐dominated marshes[J]. Limnology and Oceanography, 2007, 52(6): 2340−2349. doi: 10.4319/lo.2007.52.6.2340
    [28]
    Farron S J, Hughes Z J, FitzGerald D M, et al. The impacts of bioturbation by common marsh crabs on sediment erodibility: a laboratory flume investigation[J]. Estuarine, Coastal and Shelf Science, 2020, 238: 106710. doi: 10.1016/j.ecss.2020.106710
    [29]
    陈雪, 贺强, 辛沛, 等. 河口海岸潮滩蟹类生物扰动行为过程研究进展[J]. 海洋科学, 2021, 45(10): 113−122.

    Chen Xue, He Qiang, Xin Pei, et al. Research progress on the biological disturbed behavior process of crabs in the tidal flats of estuaries and coasts[J]. Marine Sciences, 2021, 45(10): 113−122.
    [30]
    Mistri M, Pitacco V, Granata T, et al. When the levee breaks: effects of flood on offshore water contamination and benthic community in the Mediterranean (Ionian Sea)[J]. Marine Pollution Bulletin, 2019, 140: 588−596. doi: 10.1016/j.marpolbul.2019.02.005
    [31]
    Kon K, Goto A, Tanita I, et al. Multiple effects of a typhoon strike and wastewater effluent on benthic macrofaunal communities in a mangrove estuary[J]. Hydrobiologia, 2022, 849(11): 2569−2579. doi: 10.1007/s10750-022-04877-x
    [32]
    杨明生. 武汉市南湖大型底栖动物群落结构与生态功能的研究[D]. 武汉: 华中农业大学, 2009.

    Yang Mingsheng. Studies on the community structure and ecological function of macrozoobenthos in Lake Nanhu, Wuhan City, China[D]. Wuhan: Huazhong Agricultural University, 2009.
    [33]
    林良羽. 崇明东滩大型底栖动物功能群与沉积物理化因子关系研究[D]. 上海: 华东师范大学, 2015.

    Lin Liangyu. Study on the relationships between the benthic macroinvertebrate functional groups and sediment physicochemical factors in Chongming Dongtan[D]. Shanghai: East China Normal University, 2015.
    [34]
    Walsh W J. Stability of a coral reef fish community following a catastrophic storm[J]. Coral Reefs, 1983, 2(1): 49−63. doi: 10.1007/BF00304732
    [35]
    van Rijn L C. Principles of sediment transport in rivers, estuaries and coastal seas[R]. Amsterdam, The Netherlands: Aqua Publications, 1993.
    [36]
    Hinchey E K, Schaffner L C, Hoar C C, et al. Responses of estuarine benthic invertebrates to sediment burial: the importance of mobility and adaptation[J]. Hydrobiologia, 2006, 556(1): 85−98. doi: 10.1007/s10750-005-1029-0
    [37]
    Shi Benwei, Yang Shilun, Temmerman S, et al. Effect of typhoon‐induced intertidal‐flat erosion on dominant macrobenthic species (Meretrix meretrix)[J]. Limnology and Oceanography, 2021, 66(12): 4197−4209. doi: 10.1002/lno.11953
    [38]
    Wiesebron L, Teeuw L, van Dalen J, et al. Contrasting strategies to cope with storm‐induced erosion events: a flume study comparing a native vs. introduced bivalve[J]. Limnology and Oceanography, 2022, 67(11): 2572−2585. doi: 10.1002/lno.12223
    [39]
    Yang Shilun, Friedrichs C T, Shi Zhong, et al. Morphological response of tidal marshes, flats and channels of the outer Yangtze River mouth to a major storm[J]. Estuaries, 2003, 26(6): 1416−1425. doi: 10.1007/BF02803650
    [40]
    王爱军, 叶翔, 李云海. 台风期间港湾海岸湿地侵蚀、淤积的环境动力学机制初探——以福建罗源湾为例[J]. 沉积学报, 2013, 31(2): 315−324.

    Wang Aijun, Ye Xiang, Li Yunhai. Environmental dynamic mechanisms for sediment erosion and accretion over embayment coastal wetland during typhoon event: a case study from Luoyuan Bay, Fujian China[J]. Acta Sedimentologica Sinica, 2013, 31(2): 315−324.
    [41]
    田家怡, 谢文军, 孙景宽. 黄河三角洲贝壳堤岛脆弱生态系统破坏现状及保护对策[J]. 环境科学与管理, 2009, 34(8): 138−143. doi: 10.3969/j.issn.1673-1212.2009.08.040

    Tian Jiayi, Xie Wenjun, Sun Jingkuan. Current status of vulnerable ecosystem of shell islands and protection measures in Yellow River Delta[J]. Environmental Science and Management, 2009, 34(8): 138−143. doi: 10.3969/j.issn.1673-1212.2009.08.040
    [42]
    Price B A, Harvey E S, Mangubhai S, et al. Responses of benthic habitat and fish to severe tropical cyclone Winston in Fiji[J]. Coral Reefs, 2021, 40(3): 807−819. doi: 10.1007/s00338-021-02086-x
    [43]
    Chessman B C. Prediction of riverine fish assemblages through the concept of environmental filters[J]. Marine and Freshwater Research, 2006, 57(6): 601−609. doi: 10.1071/MF06091
    [44]
    Voelz N J, McArthur J V. An exploration of factors influencing lotic insect species richness[J]. Biodiversity & Conservation, 2000, 9(11): 1543−1570.
    [45]
    Lu L, Goh B P L, Chou L M. Effects of coastal reclamation on riverine macrobenthic infauna (Sungei Punggol) in Singapore[J]. Journal of Aquatic Ecosystem Stress and Recovery, 2002, 9(2): 127−135. doi: 10.1023/A:1014483804331
    [46]
    Suo Aning, Cao Ke, Zhao Jianhua, et al. Study on impacts of sea reclamation on fish community in adjacent waters: a case in Caofeidian, North China[J]. Journal of Coastal Research, 2015, 73(S1): 183−187.
    [47]
    袁兴中, 陆健健. 围垦对长江口南岸底栖动物群落结构及多样性的影响[J]. 生态学报, 2001, 21(10): 1642−1647. doi: 10.3321/j.issn:1000-0933.2001.10.012

    Yuan Xingzhong, Lu Jianjian. Influence of diking on the benthic macro-invertebrate community structure and diversity in the south bank of the Changjiang Estuary[J]. Acta Ecologica Sinica, 2001, 21(10): 1642−1647. doi: 10.3321/j.issn:1000-0933.2001.10.012
    [48]
    杨世伦, 姚炎明, 贺松林. 长江口冲积岛岸滩剖面形态和冲淤规律[J]. 海洋与湖沼, 1999, 30(6): 764−769. doi: 10.3321/j.issn:0029-814X.1999.06.028

    Yang Shilun, Yao Yanming, He Songlin. Coastal profile shape and erosion-accretion changes of the sediment islands in the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 1999, 30(6): 764−769. doi: 10.3321/j.issn:0029-814X.1999.06.028
    [49]
    张衡, 何文珊, 童春富, 等. 长江口低盐淡水区潮间带鱼类群落结构季节及半月相变化[J]. 应用生态学报, 2008, 19(5): 1110−1116.

    Zhang Heng, He Wenshan, Tong Chunfu, et al. Seasonal and semi-lunar changes in fish community structure in low salinity intertidal area of Yangtze estuary[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 1110−1116.
    [50]
    Yang Shilun, Li H, Ysebaert T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: on the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science, 2008, 77(4): 657−671. doi: 10.1016/j.ecss.2007.10.024
    [51]
    王琰, 童春富, 汤琳, 等. 崇明东滩盐沼湿地大型底栖动物功能群分布特征及其影响因子[J]. 生态学杂志, 2020, 39(3): 880−892.

    Wang Yan, Tong Chunfu, Tang Lin, et al. Distribution characteristics and influencing factors of the benthic macroinvertebrate functional groups in the salt marshes of Chongming Dongtan[J]. Chinese Journal of Ecology, 2020, 39(3): 880−892.
    [52]
    Poindexter C M, Rusello P J, Variano E A. Acoustic Doppler velocimeter-induced acoustic streaming and its implications for measurement[J]. Experiments in Fluids, 2011, 50(5): 1429−1442. doi: 10.1007/s00348-010-1001-2
    [53]
    Soulsby R L, Clarke S. Bed shear-stresses under combined waves and currents on smooth and rough beds[R]. Oxford, UK: HR Wallingford, 2005.
    [54]
    Salehi M, Strom K. Measurement of critical shear stress for mud mixtures in the San Jacinto estuary under different wave and current combinations[J]. Continental Shelf Research, 2012, 47: 78−92. doi: 10.1016/j.csr.2012.07.004
    [55]
    Pinkas L, Oliphant M S, Iverson I L K. Fish bulletin 152. Food habits of albacore, Bluefin tuna, and bonito in California waters[J]. UC San Diego: Library-Scripps Collection, 1970.
    [56]
    Harley M D, Turner I L, Kinsela M A, et al. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction[J]. Scientific Reports, 2017, 7(1): 6033. doi: 10.1038/s41598-017-05792-1
    [57]
    Yin Chengtuan, Zhang Weisheng, Xiong Mengjie, et al. Storm surge responses to the representative tracks and storm timing in the Yangtze Estuary, China[J]. Ocean Engineering, 2021, 233: 109020. doi: 10.1016/j.oceaneng.2021.109020
    [58]
    Liu Zhiquan, Fan Bin, Huang Youhui, et al. Assessing the ecological health of the Chongming Dongtan Nature Reserve, China, using different benthic biotic indices[J]. Marine Pollution Bulletin, 2019, 146: 76−84. doi: 10.1016/j.marpolbul.2019.06.006
    [59]
    Boulenger A. Effects of a newly created mussel bed and hydrodynamic conditions on the biodiversity and functioning of macrobenthic communities[R]. Ghent: Ghent University, 2021.
    [60]
    袁兴中, 陆健健, 刘红. 河口盐沼植物对大型底栖动物群落的影响[J]. 生态学报, 2002, 22(3): 326−333. doi: 10.3321/j.issn:1000-0933.2002.03.006

    Yuan Xingzhong, Lu Jianjian, Liu Hong. Influence of characteristics of scirpus mariqueter community on the benthic macro-invertebrate in a salt marsh of the Changjiang estuary[J]. Acta Ecologica Sinica, 2002, 22(3): 326−333. doi: 10.3321/j.issn:1000-0933.2002.03.006
    [61]
    Wildsmith M D, Potter I C, Valesini F J, et al. Do the assemblages of benthic macroinvertebrates in nearshore waters of Western Australia vary among habitat types, zones and seasons?[J]. Journal of the Marine Biological Association of the United Kingdom, 2005, 85(2): 217−232. doi: 10.1017/S0025315405011100h
    [62]
    Zhang Longhui, Chen Dezhi, Gao Shu, et al. Distribution of benthic macrofaunal communities in intertidal flat under hydrodynamic influence: a case study of Jiangsu coast, East China[J]. Journal of Oceanology and Limnology, 2023, 41(3): 1024−1038. doi: 10.1007/s00343-022-1061-1
    [63]
    张衡, 张瑛瑛, 刁山洲, 等. 长江口盐沼湿地不同亚生境的大型底栖动物群落组成和多样性差异[J]. 生态学杂志, 2019, 38(10): 3102−3109.

    Zhang Heng, Zhang Yingying, Diao Shanzhou, et al. Difference of macrobenthos community composition and diversity in different sub-habitats in salt marsh wetland of the Yangtze River Estuary[J]. Chinese Journal of Ecology, 2019, 38(10): 3102−3109.
    [64]
    廖一波, 曾江宁, 陆延, 等. 台风扰动后大渔湾大型底栖动物的生态特征[J]. 海洋学研究, 2009, 27(1): 50−55. doi: 10.3969/j.issn.1001-909X.2009.01.008

    Liao Yibo, Zeng Jiangning, Lu Yan, et al. Ecological characteristics of the macrobenthos in the Dayuwan Bay after the typhoon[J]. Journal of Marine Sciences, 2009, 27(1): 50−55. doi: 10.3969/j.issn.1001-909X.2009.01.008
    [65]
    杨泽华, 童春富, 陆健健. 长江口湿地三个演替阶段大型底栖动物群落特征[J]. 动物学研究, 2006, 27(4): 411−418. doi: 10.3321/j.issn:0254-5853.2006.04.012

    Yang Zehua, Tong Chunfu, Lu Jianjian. Characteristics of macrobenthic fauna communities in three successional stages of the new emergent salt marsh in an estuary of the Yangtze River[J]. Zoological Research, 2006, 27(4): 411−418. doi: 10.3321/j.issn:0254-5853.2006.04.012
    [66]
    Pagès J F, Gera A, Romero J, et al. The Mediterranean benthic herbivores show diverse responses to extreme storm disturbances[J]. PLoS One, 2013, 8(5): e62719. doi: 10.1371/journal.pone.0062719
    [67]
    Harris L, Nel R, Smale M, et al. Swashed away? Storm impacts on sandy beach macrofaunal communities[J]. Estuarine, Coastal and Shelf Science, 2011, 94(3): 210−221. doi: 10.1016/j.ecss.2011.06.013
    [68]
    Gallucci F, Netto S A. Effects of the passage of cold fronts over acoastal site: an ecosystem approach[J]. Marine ecology progress series, 2004, 281: 79−92. doi: 10.3354/meps281079
    [69]
    张荷悦, 周怡, 孙涛, 等. 潮滩生物-物理互馈机制与系统稳态效应研究进展[J]. 科学通报, 2023, 68(5): 457−468. doi: 10.1360/TB-2022-0475

    Zhang Heyi, Zhou Yi, Sun Tao, et al. Advances in biophysical feedbacks and the resulting stable states in tidal flat systems[J]. Chinese Science Bulletin, 2023, 68(5): 457−468. doi: 10.1360/TB-2022-0475
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article views (191) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return