Citation: | Li Jingjing,Shi Benwei,Peng Zhong, et al. Study on the influence of Typhoon “Muifa” on the macrobenthic community of tidal flat[J]. Haiyang Xuebao,2024, 46(7):29–40 doi: 10.12284/hyxb2024068 |
[1] |
Mei Wei, Xie Shangping, Primeau F, et al. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures[J]. Science Advances, 2015, 1(4): e1500014. doi: 10.1126/sciadv.1500014
|
[2] |
Chen Xiaolong, Zhou Tianjun, Wu Peili, et al. Emergent constraints on future projections of the western North Pacific Subtropical High[J]. Nature Communications, 2020, 11(1): 2802. doi: 10.1038/s41467-020-16631-9
|
[3] |
Wang Haili, Wang Chunzai. What caused the increase of tropical cyclones in the western North Pacific during the period of 2011–2020?[J]. Climate Dynamics, 2023, 60(1/2): 165−177.
|
[4] |
Yin Jie, Yin Zhane, Xu Shiyuan. Composite risk assessment of typhoon-induced disaster for China’s coastal area[J]. Natural Hazards, 2013, 69(3): 1423−1434. doi: 10.1007/s11069-013-0755-2
|
[5] |
Hawkes D D. Erosion of tidal flats near Georgetown, British Guiana[J]. Nature, 1962, 196(4850): 128−130. doi: 10.1038/196128a0
|
[6] |
Xu Chao, Liu Weibo. Integrating a three-Level GIS framework and a graph model to Track, represent, and analyze the dynamic activities of tidal flats[J]. ISPRS International Journal of Geo-Information, 2021, 10(2): 61. doi: 10.3390/ijgi10020061
|
[7] |
Egres A G, Martins C C, de Oliveira V M, et al. Effects of an experimental in situ diesel oil spill on the benthic community of unvegetated tidal flats in a subtropical estuary (Paranaguá Bay, Brazil)[J]. Marine Pollution Bulletin, 2012, 64(12): 2681−2691. doi: 10.1016/j.marpolbul.2012.10.007
|
[8] |
Gao Shu, Du Yongfen, Xie Wenjing, et al. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines[J]. Science China Earth Sciences, 2014, 57(11): 2567−2586. doi: 10.1007/s11430-014-4954-9
|
[9] |
Jung R, Adolph W, Ehlers M, et al. A multi-sensor approach for detecting the different land covers of tidal flats in the German Wadden Sea—A case study at Norderney[J]. Remote Sensing of Environment, 2015, 170: 188−202. doi: 10.1016/j.rse.2015.09.018
|
[10] |
Hallberg R O. Metal distribution along a profile of an inter-tidal area[J]. Estuarine and Coastal Marine Science, 1974, 2(2): 153−170. doi: 10.1016/0302-3524(74)90037-1
|
[11] |
Pilotto F, Harvey G L, Wharton G, et al. Simple large wood structures promote hydromorphological heterogeneity and benthic macroinvertebrate diversity in low-gradient rivers[J]. Aquatic Sciences, 2016, 78(4): 755−766. doi: 10.1007/s00027-016-0467-2
|
[12] |
Nehls G, Tiedemann R. What determines the densities of feeding birds on tidal flats? A case study on dunlin, Calidris alpina, in the Wadden Sea[J]. Netherlands Journal of Sea Research, 1993, 31(4): 375−384. doi: 10.1016/0077-7579(93)90054-V
|
[13] |
Zhou Zhichao, Meng Han, Liu Yang, et al. Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing[J]. Frontiers in Microbiology, 2017, 8: 2148. doi: 10.3389/fmicb.2017.02148
|
[14] |
Pichler H A, Spach H L, Gray C A, et al. Environmental influences on resident and transient fishes across shallow estuarine beaches and tidal flats in a Brazilian World Heritage area[J]. Estuarine, Coastal and Shelf Science, 2015, 164: 482−492. doi: 10.1016/j.ecss.2015.07.041
|
[15] |
Beukema J J. Biomass and species richness of the macro-benthic animals living on the tidal flats of the Dutch Wadden Sea[J]. Netherlands Journal of Sea Research, 1976, 10(2): 236−261. doi: 10.1016/0077-7579(76)90017-X
|
[16] |
Li Haifu, Li Lifeng, Su Fangli, et al. Ecological stability evaluation of tidal flat in coastal estuary: a case study of Liaohe estuary wetland, China[J]. Ecological Indicators, 2021, 130: 108032. doi: 10.1016/j.ecolind.2021.108032
|
[17] |
Zhang Rong, Chen Yongping, Chen Peixiong, et al. Impacts of tidal flat reclamation on suspended sediment dynamics in the tidal-dominated Wenzhou Coast, China[J]. Frontiers in Marine Science, 2023, 10: 1097177. doi: 10.3389/fmars.2023.1097177
|
[18] |
Song Weiwei, Li Yi. Tidal flat microbial communities between the Huaihe estuary and Yangtze River estuary[J]. Environmental Research, 2023, 238: 117141. doi: 10.1016/j.envres.2023.117141
|
[19] |
Covich A P, Palmer M A, Crowl T A. The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling[J]. BioScience, 1999, 49(2): 119−127. doi: 10.2307/1313537
|
[20] |
Devine J A, Vanni M J. Spatial and seasonal variation in nutrient excretion by benthic invertebrates in a eutrophic reservoir[J]. Freshwater Biology, 2002, 47(6): 1107−1121. doi: 10.1046/j.1365-2427.2002.00843.x
|
[21] |
Ostendorp W, Hofmann H, Teufel L, et al. Effects of a retaining wall and an artificial embankment on nearshore littoral habitats and biota in a large Alpine lake[J]. Hydrobiologia, 2020, 847(2): 365−389. doi: 10.1007/s10750-019-04099-8
|
[22] |
Cozzoli F, Gjoni V, Del Pasqua M, et al. A process based model of cohesive sediment resuspension under bioturbators’ influence[J]. Science of the Total Environment, 2019, 670: 18−30. doi: 10.1016/j.scitotenv.2019.03.085
|
[23] |
Patrick C J, Yeager L, Armitage A R, et al. A system level analysis of coastal ecosystem responses to hurricane impacts[J]. Estuaries and Coasts, 2020, 43(5): 943−959. doi: 10.1007/s12237-019-00690-3
|
[24] |
Fan Daidu, Guo Yanxia, Wang Ping, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: with an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26(4): 517−538. doi: 10.1016/j.csr.2005.12.011
|
[25] |
Corte G N, Schlacher T A, Checon H H, et al. Storm effects on intertidal invertebrates: increased beta diversity of few individuals and species[J]. PeerJ, 2017, 5: e3360. doi: 10.7717/peerj.3360
|
[26] |
Shi Benwei, Pratolongo P D, Du Yongfen, et al. Influence of macrobenthos (Meretrix meretrix Linnaeus) on erosion‐accretion processes in intertidal flats: a case study from a cultivation zone[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(1): e2019JG005345. doi: 10.1029/2019JG005345
|
[27] |
Escapa M, Minkoff D R, Perillo G M E, et al. Direct and indirect effects of burrowing crab Chasmagnathus granulatus activities on erosion of southwest Atlantic Sarcocornia‐dominated marshes[J]. Limnology and Oceanography, 2007, 52(6): 2340−2349. doi: 10.4319/lo.2007.52.6.2340
|
[28] |
Farron S J, Hughes Z J, FitzGerald D M, et al. The impacts of bioturbation by common marsh crabs on sediment erodibility: a laboratory flume investigation[J]. Estuarine, Coastal and Shelf Science, 2020, 238: 106710. doi: 10.1016/j.ecss.2020.106710
|
[29] |
陈雪, 贺强, 辛沛, 等. 河口海岸潮滩蟹类生物扰动行为过程研究进展[J]. 海洋科学, 2021, 45(10): 113−122.
Chen Xue, He Qiang, Xin Pei, et al. Research progress on the biological disturbed behavior process of crabs in the tidal flats of estuaries and coasts[J]. Marine Sciences, 2021, 45(10): 113−122.
|
[30] |
Mistri M, Pitacco V, Granata T, et al. When the levee breaks: effects of flood on offshore water contamination and benthic community in the Mediterranean (Ionian Sea)[J]. Marine Pollution Bulletin, 2019, 140: 588−596. doi: 10.1016/j.marpolbul.2019.02.005
|
[31] |
Kon K, Goto A, Tanita I, et al. Multiple effects of a typhoon strike and wastewater effluent on benthic macrofaunal communities in a mangrove estuary[J]. Hydrobiologia, 2022, 849(11): 2569−2579. doi: 10.1007/s10750-022-04877-x
|
[32] |
杨明生. 武汉市南湖大型底栖动物群落结构与生态功能的研究[D]. 武汉: 华中农业大学, 2009.
Yang Mingsheng. Studies on the community structure and ecological function of macrozoobenthos in Lake Nanhu, Wuhan City, China[D]. Wuhan: Huazhong Agricultural University, 2009.
|
[33] |
林良羽. 崇明东滩大型底栖动物功能群与沉积物理化因子关系研究[D]. 上海: 华东师范大学, 2015.
Lin Liangyu. Study on the relationships between the benthic macroinvertebrate functional groups and sediment physicochemical factors in Chongming Dongtan[D]. Shanghai: East China Normal University, 2015.
|
[34] |
Walsh W J. Stability of a coral reef fish community following a catastrophic storm[J]. Coral Reefs, 1983, 2(1): 49−63. doi: 10.1007/BF00304732
|
[35] |
van Rijn L C. Principles of sediment transport in rivers, estuaries and coastal seas[R]. Amsterdam, The Netherlands: Aqua Publications, 1993.
|
[36] |
Hinchey E K, Schaffner L C, Hoar C C, et al. Responses of estuarine benthic invertebrates to sediment burial: the importance of mobility and adaptation[J]. Hydrobiologia, 2006, 556(1): 85−98. doi: 10.1007/s10750-005-1029-0
|
[37] |
Shi Benwei, Yang Shilun, Temmerman S, et al. Effect of typhoon‐induced intertidal‐flat erosion on dominant macrobenthic species (Meretrix meretrix)[J]. Limnology and Oceanography, 2021, 66(12): 4197−4209. doi: 10.1002/lno.11953
|
[38] |
Wiesebron L, Teeuw L, van Dalen J, et al. Contrasting strategies to cope with storm‐induced erosion events: a flume study comparing a native vs. introduced bivalve[J]. Limnology and Oceanography, 2022, 67(11): 2572−2585. doi: 10.1002/lno.12223
|
[39] |
Yang Shilun, Friedrichs C T, Shi Zhong, et al. Morphological response of tidal marshes, flats and channels of the outer Yangtze River mouth to a major storm[J]. Estuaries, 2003, 26(6): 1416−1425. doi: 10.1007/BF02803650
|
[40] |
王爱军, 叶翔, 李云海. 台风期间港湾海岸湿地侵蚀、淤积的环境动力学机制初探——以福建罗源湾为例[J]. 沉积学报, 2013, 31(2): 315−324.
Wang Aijun, Ye Xiang, Li Yunhai. Environmental dynamic mechanisms for sediment erosion and accretion over embayment coastal wetland during typhoon event: a case study from Luoyuan Bay, Fujian China[J]. Acta Sedimentologica Sinica, 2013, 31(2): 315−324.
|
[41] |
田家怡, 谢文军, 孙景宽. 黄河三角洲贝壳堤岛脆弱生态系统破坏现状及保护对策[J]. 环境科学与管理, 2009, 34(8): 138−143. doi: 10.3969/j.issn.1673-1212.2009.08.040
Tian Jiayi, Xie Wenjun, Sun Jingkuan. Current status of vulnerable ecosystem of shell islands and protection measures in Yellow River Delta[J]. Environmental Science and Management, 2009, 34(8): 138−143. doi: 10.3969/j.issn.1673-1212.2009.08.040
|
[42] |
Price B A, Harvey E S, Mangubhai S, et al. Responses of benthic habitat and fish to severe tropical cyclone Winston in Fiji[J]. Coral Reefs, 2021, 40(3): 807−819. doi: 10.1007/s00338-021-02086-x
|
[43] |
Chessman B C. Prediction of riverine fish assemblages through the concept of environmental filters[J]. Marine and Freshwater Research, 2006, 57(6): 601−609. doi: 10.1071/MF06091
|
[44] |
Voelz N J, McArthur J V. An exploration of factors influencing lotic insect species richness[J]. Biodiversity & Conservation, 2000, 9(11): 1543−1570.
|
[45] |
Lu L, Goh B P L, Chou L M. Effects of coastal reclamation on riverine macrobenthic infauna (Sungei Punggol) in Singapore[J]. Journal of Aquatic Ecosystem Stress and Recovery, 2002, 9(2): 127−135. doi: 10.1023/A:1014483804331
|
[46] |
Suo Aning, Cao Ke, Zhao Jianhua, et al. Study on impacts of sea reclamation on fish community in adjacent waters: a case in Caofeidian, North China[J]. Journal of Coastal Research, 2015, 73(S1): 183−187.
|
[47] |
袁兴中, 陆健健. 围垦对长江口南岸底栖动物群落结构及多样性的影响[J]. 生态学报, 2001, 21(10): 1642−1647. doi: 10.3321/j.issn:1000-0933.2001.10.012
Yuan Xingzhong, Lu Jianjian. Influence of diking on the benthic macro-invertebrate community structure and diversity in the south bank of the Changjiang Estuary[J]. Acta Ecologica Sinica, 2001, 21(10): 1642−1647. doi: 10.3321/j.issn:1000-0933.2001.10.012
|
[48] |
杨世伦, 姚炎明, 贺松林. 长江口冲积岛岸滩剖面形态和冲淤规律[J]. 海洋与湖沼, 1999, 30(6): 764−769. doi: 10.3321/j.issn:0029-814X.1999.06.028
Yang Shilun, Yao Yanming, He Songlin. Coastal profile shape and erosion-accretion changes of the sediment islands in the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 1999, 30(6): 764−769. doi: 10.3321/j.issn:0029-814X.1999.06.028
|
[49] |
张衡, 何文珊, 童春富, 等. 长江口低盐淡水区潮间带鱼类群落结构季节及半月相变化[J]. 应用生态学报, 2008, 19(5): 1110−1116.
Zhang Heng, He Wenshan, Tong Chunfu, et al. Seasonal and semi-lunar changes in fish community structure in low salinity intertidal area of Yangtze estuary[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 1110−1116.
|
[50] |
Yang Shilun, Li H, Ysebaert T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: on the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science, 2008, 77(4): 657−671. doi: 10.1016/j.ecss.2007.10.024
|
[51] |
王琰, 童春富, 汤琳, 等. 崇明东滩盐沼湿地大型底栖动物功能群分布特征及其影响因子[J]. 生态学杂志, 2020, 39(3): 880−892.
Wang Yan, Tong Chunfu, Tang Lin, et al. Distribution characteristics and influencing factors of the benthic macroinvertebrate functional groups in the salt marshes of Chongming Dongtan[J]. Chinese Journal of Ecology, 2020, 39(3): 880−892.
|
[52] |
Poindexter C M, Rusello P J, Variano E A. Acoustic Doppler velocimeter-induced acoustic streaming and its implications for measurement[J]. Experiments in Fluids, 2011, 50(5): 1429−1442. doi: 10.1007/s00348-010-1001-2
|
[53] |
Soulsby R L, Clarke S. Bed shear-stresses under combined waves and currents on smooth and rough beds[R]. Oxford, UK: HR Wallingford, 2005.
|
[54] |
Salehi M, Strom K. Measurement of critical shear stress for mud mixtures in the San Jacinto estuary under different wave and current combinations[J]. Continental Shelf Research, 2012, 47: 78−92. doi: 10.1016/j.csr.2012.07.004
|
[55] |
Pinkas L, Oliphant M S, Iverson I L K. Fish bulletin 152. Food habits of albacore, Bluefin tuna, and bonito in California waters[J]. UC San Diego: Library-Scripps Collection, 1970.
|
[56] |
Harley M D, Turner I L, Kinsela M A, et al. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction[J]. Scientific Reports, 2017, 7(1): 6033. doi: 10.1038/s41598-017-05792-1
|
[57] |
Yin Chengtuan, Zhang Weisheng, Xiong Mengjie, et al. Storm surge responses to the representative tracks and storm timing in the Yangtze Estuary, China[J]. Ocean Engineering, 2021, 233: 109020. doi: 10.1016/j.oceaneng.2021.109020
|
[58] |
Liu Zhiquan, Fan Bin, Huang Youhui, et al. Assessing the ecological health of the Chongming Dongtan Nature Reserve, China, using different benthic biotic indices[J]. Marine Pollution Bulletin, 2019, 146: 76−84. doi: 10.1016/j.marpolbul.2019.06.006
|
[59] |
Boulenger A. Effects of a newly created mussel bed and hydrodynamic conditions on the biodiversity and functioning of macrobenthic communities[R]. Ghent: Ghent University, 2021.
|
[60] |
袁兴中, 陆健健, 刘红. 河口盐沼植物对大型底栖动物群落的影响[J]. 生态学报, 2002, 22(3): 326−333. doi: 10.3321/j.issn:1000-0933.2002.03.006
Yuan Xingzhong, Lu Jianjian, Liu Hong. Influence of characteristics of scirpus mariqueter community on the benthic macro-invertebrate in a salt marsh of the Changjiang estuary[J]. Acta Ecologica Sinica, 2002, 22(3): 326−333. doi: 10.3321/j.issn:1000-0933.2002.03.006
|
[61] |
Wildsmith M D, Potter I C, Valesini F J, et al. Do the assemblages of benthic macroinvertebrates in nearshore waters of Western Australia vary among habitat types, zones and seasons?[J]. Journal of the Marine Biological Association of the United Kingdom, 2005, 85(2): 217−232. doi: 10.1017/S0025315405011100h
|
[62] |
Zhang Longhui, Chen Dezhi, Gao Shu, et al. Distribution of benthic macrofaunal communities in intertidal flat under hydrodynamic influence: a case study of Jiangsu coast, East China[J]. Journal of Oceanology and Limnology, 2023, 41(3): 1024−1038. doi: 10.1007/s00343-022-1061-1
|
[63] |
张衡, 张瑛瑛, 刁山洲, 等. 长江口盐沼湿地不同亚生境的大型底栖动物群落组成和多样性差异[J]. 生态学杂志, 2019, 38(10): 3102−3109.
Zhang Heng, Zhang Yingying, Diao Shanzhou, et al. Difference of macrobenthos community composition and diversity in different sub-habitats in salt marsh wetland of the Yangtze River Estuary[J]. Chinese Journal of Ecology, 2019, 38(10): 3102−3109.
|
[64] |
廖一波, 曾江宁, 陆延, 等. 台风扰动后大渔湾大型底栖动物的生态特征[J]. 海洋学研究, 2009, 27(1): 50−55. doi: 10.3969/j.issn.1001-909X.2009.01.008
Liao Yibo, Zeng Jiangning, Lu Yan, et al. Ecological characteristics of the macrobenthos in the Dayuwan Bay after the typhoon[J]. Journal of Marine Sciences, 2009, 27(1): 50−55. doi: 10.3969/j.issn.1001-909X.2009.01.008
|
[65] |
杨泽华, 童春富, 陆健健. 长江口湿地三个演替阶段大型底栖动物群落特征[J]. 动物学研究, 2006, 27(4): 411−418. doi: 10.3321/j.issn:0254-5853.2006.04.012
Yang Zehua, Tong Chunfu, Lu Jianjian. Characteristics of macrobenthic fauna communities in three successional stages of the new emergent salt marsh in an estuary of the Yangtze River[J]. Zoological Research, 2006, 27(4): 411−418. doi: 10.3321/j.issn:0254-5853.2006.04.012
|
[66] |
Pagès J F, Gera A, Romero J, et al. The Mediterranean benthic herbivores show diverse responses to extreme storm disturbances[J]. PLoS One, 2013, 8(5): e62719. doi: 10.1371/journal.pone.0062719
|
[67] |
Harris L, Nel R, Smale M, et al. Swashed away? Storm impacts on sandy beach macrofaunal communities[J]. Estuarine, Coastal and Shelf Science, 2011, 94(3): 210−221. doi: 10.1016/j.ecss.2011.06.013
|
[68] |
Gallucci F, Netto S A. Effects of the passage of cold fronts over acoastal site: an ecosystem approach[J]. Marine ecology progress series, 2004, 281: 79−92. doi: 10.3354/meps281079
|
[69] |
张荷悦, 周怡, 孙涛, 等. 潮滩生物-物理互馈机制与系统稳态效应研究进展[J]. 科学通报, 2023, 68(5): 457−468. doi: 10.1360/TB-2022-0475
Zhang Heyi, Zhou Yi, Sun Tao, et al. Advances in biophysical feedbacks and the resulting stable states in tidal flat systems[J]. Chinese Science Bulletin, 2023, 68(5): 457−468. doi: 10.1360/TB-2022-0475
|