Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
Zhao Sufang,Liu Renju,Dong Chunming, et al. Microbial diversity of alkane- and plastic-degrading microbiome in offshore sediments of Ross Sea, Southern Ocean[J]. Haiyang Xuebao,2024, 46(5):81–92 doi: 10.12284/hyxb2024066
Citation: Zhao Sufang,Liu Renju,Dong Chunming, et al. Microbial diversity of alkane- and plastic-degrading microbiome in offshore sediments of Ross Sea, Southern Ocean[J]. Haiyang Xuebao,2024, 46(5):81–92 doi: 10.12284/hyxb2024066

Microbial diversity of alkane- and plastic-degrading microbiome in offshore sediments of Ross Sea, Southern Ocean

doi: 10.12284/hyxb2024066
  • Received Date: 2023-11-11
  • Rev Recd Date: 2024-03-11
  • Available Online: 2024-05-15
  • Publish Date: 2024-05-01
  • Oil and plastic pollutants are a serious threat to marine ecosystems and have even been found in the Ross Sea of the Southern Ocean. In order to obtain low-temperature alkane degrading bacteria and plastic-degrading bacteria in the region, a total of twelve sediment samples were collected in the Ross Sea area for enrichment and isolation of alkane-degrading bacteria at low-temperature, and the diversity analyses of the tetradecane-enriched communities showed that the most dominant genera were Pseudomonas, Alcanivorax, Marinomonas, Pseudoalteromonas. The polyethylene terephthalate(PET)and polyethylene(PE)was further validated using the dominant alkane-degrading bacteria. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (ATR-FTIR) demonstrated that the four pure cultures of Pseudomonas pelagia R1-05-CR3, Pseudomonas taeanensis A11-04-CA4, Halomonas titanicae A11-02-7C2 and Rhodococcus cerastii R1-05-7C3 could degrade PE effectively. The results of UPLC-MS and SEM confirmed the PET degradation by isolates of R. cerastii R1-05-7C3, Microbacterium maritypicum RA1-00-CA1, and H. titanicae A11-02-7C2. In conclusion, this study reports the diversity of the tetradecane-enriched consortia at low-temperature and plastic degrading bacteria in the offshore sediments of the Ross Sea in the Southern Ocean, which play a selfpurifying role in in-situ environmental contamination, and also provided strain resources for the biodegradation of hydrocarbon and plastic contaminants at low temperature.
  • loading
  • [1]
    Bargagli R, Rota E. Microplastic interactions and possible combined biological effects in antarctic marine ecosystems[J]. Animals, 2022, 13(1): 162. doi: 10.3390/ani13010162
    [2]
    Suaria G, Perold V, Lee J R, et al. Floating macro- and microplastics around the Southern Ocean: results from the Antarctic Circumnavigation Expedition[J]. Environment International, 2020, 136: 105494. doi: 10.1016/j.envint.2020.105494
    [3]
    Cincinelli A, Scopetani C, Chelazzi D, et al. Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR[J]. Chemosphere, 2017, 175: 391−400. doi: 10.1016/j.chemosphere.2017.02.024
    [4]
    Munari C, Infantini V, Scoponi M, et al. Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica)[J]. Marine Pollution Bulletin, 2017, 122(1/2): 161−165.
    [5]
    Cunningham E M, Ehlers S M, Dick J T A, et al. High abundances of microplastic pollution in deep-sea sediments: evidence from antarctica and the Southern Ocean[J]. Environmental Science & Technology, 2020, 54(21): 13661−13671.
    [6]
    Vázquez S, Monien P, Pepino Minetti R, et al. Bacterial communities and chemical parameters in soils and coastal sediments in response to diesel spills at Carlini Station, Antarctica[J]. Science of the Total Environment, 2017, 605-606: 26−37. doi: 10.1016/j.scitotenv.2017.06.129
    [7]
    Zakaria N N, Convey P, Gomez-Fuentes C, et al. Oil bioremediation in the marine environment of antarctica: a review and bibliometric keyword cluster analysis[J]. Microorganisms, 2021, 9(2): 419. doi: 10.3390/microorganisms9020419
    [8]
    Curtosi A, Pelletier E, Vodopivez C L, et al. Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier[J]. Science of the Total Environment, 2007, 383(1/3): 193−204.
    [9]
    Luigi M, Gaetano D M, Vivia B, et al. Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica)[J]. Marine Pollution Bulletin, 2007, 54(11): 1754−1761. doi: 10.1016/j.marpolbul.2007.07.011
    [10]
    Yakimov M M, Giuliano L, Bruni V, et al. Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers[J]. The New Microbiologica, 1999, 22(3): 249−256.
    [11]
    Pepi M, Cesàro A, Liut G, et al. An antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsyfying glycolipid[J]. FEMS Microbiology Ecology, 2005, 53(1): 157−166. doi: 10.1016/j.femsec.2004.09.013
    [12]
    Lo Giudice A, Michaud L, De Pascale D, et al. Lipolytic activity of Antarctic cold-adapted marine bacteria (Terra Nova Bay, Ross Sea)[J]. Journal of Applied Microbiology, 2006, 101(5): 1039−1048. doi: 10.1111/j.1365-2672.2006.03006.x
    [13]
    Yakimov M M, Gentile G, Bruni V, et al. Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria[J]. FEMS Microbiology Ecology, 2004, 49(3): 419−432. doi: 10.1016/j.femsec.2004.04.018
    [14]
    Sfriso A A, Tomio Y, Rosso B, et al. Microplastic accumulation in benthic invertebrates in Terra Nova Bay (Ross Sea, Antarctica)[J]. Environment International, 2020, 137: 105587. doi: 10.1016/j.envint.2020.105587
    [15]
    Zadjelovic V, Erni-Cassola G, Obrador-Viel T, et al. A mechanistic understanding of polyethylene biodegradation by the marine bacterium Alcanivorax[J]. Journal of Hazardous Materials, 2022, 436: 129278. doi: 10.1016/j.jhazmat.2022.129278
    [16]
    Delacuvellerie A, Cyriaque V, Gobert S, et al. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation[J]. Journal of Hazardous Materials, 2019, 380: 120899. doi: 10.1016/j.jhazmat.2019.120899
    [17]
    Moog D, Schmitt J, Senger J, et al. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation[J]. Microbial Cell Factories, 2019, 18(1): 171. doi: 10.1186/s12934-019-1220-z
    [18]
    Tournier V, Topham C M, Gilles A, et al. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580(7802): 216−219. doi: 10.1038/s41586-020-2149-4
    [19]
    Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196−1199. doi: 10.1126/science.aad6359
    [20]
    Blázquez-Sánchez P, Engelberger F, Cifuentes-Anticevic J, et al. Antarctic polyester hydrolases degrade aliphatic and aromatic polyesters at moderate temperatures[J]. Applied and Environmental Microbiology, 2022, 88(1): e0184221. doi: 10.1128/AEM.01842-21
    [21]
    Yakimov M M, Bargiela R, Golyshin P N. Calm and Frenzy: Marine obligate hydrocarbonoclastic bacteria sustain ocean wellness[J]. Current Opinion in Biotechnology, 2022, 73: 337−345. doi: 10.1016/j.copbio.2021.09.015
    [22]
    Denaro R, Aulenta F, Crisafi F, et al. Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET)[J]. Science of the Total Environment, 2020, 749: 141608. doi: 10.1016/j.scitotenv.2020.141608
    [23]
    Roberts C, Edwards S, Vague M, et al. Environmental consortium containing Pseudomonas and Bacillus species synergistically degrades polyethylene terephthalate plastic[J]. mSphere, 2020, 5(6): e01151−20.
    [24]
    Zhao Sufang, Liu Renju, Wang Juan, et al. Biodegradation of polyethylene terephthalate (PET) by diverse marine bacteria in deep-sea sediments[J]. Environmental Microbiology, 2023, 25(12): 2719−2731. doi: 10.1111/1462-2920.16460
    [25]
    Hassanshahian M, Emtiazi G, Cappello S. Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea[J]. Marine Pollution Bulletin, 2012, 64(1): 7−12. doi: 10.1016/j.marpolbul.2011.11.006
    [26]
    叶静, 戴文芳, 刘圣, 等. 熊本牡蛎、葡萄牙牡蛎和长牡蛎组织菌群构成及功能的比较分析[J]. 海洋学报, 2022, 44(8): 66−77.

    Ye Jing, Dai Wenfang, Liu Sheng, et al. Comparison of the composition and functional potentials of bacterial communities in different tissues from Crassostrea sikamea, Crassostrea angulata and Crassostrea gigas[J]. Haiyang Xuebao, 2022, 44(8): 66−77.
    [27]
    Hassanshahian M, Boroujeni N A. Enrichment and identification of naphthalene-degrading bacteria from the Persian Gulf[J]. Marine Pollution Bulletin, 2016, 107(1): 59−65. doi: 10.1016/j.marpolbul.2016.04.020
    [28]
    Gao Rongrong, Sun Chaomin. A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene[J]. Journal of Hazardous Materials, 2021, 416: 125928. doi: 10.1016/j.jhazmat.2021.125928
    [29]
    Cole M, Lindeque P, Halsband C, et al. Microplastics as contaminants in the marine environment: a review[J]. Marine Pollution Bulletin, 2011, 62(12): 2588−2597. doi: 10.1016/j.marpolbul.2011.09.025
    [30]
    Vergeynst L, Wegeberg S, Aamand J, et al. Biodegradation of marine oil spills in the Arctic with a Greenland perspective[J]. Science of the Total Environment, 2018, 626: 1243−1258. doi: 10.1016/j.scitotenv.2018.01.173
    [31]
    Tapilatu Y, Acquaviva M, Guigue C, et al. Isolation of alkane-degrading bacteria from deep-sea Mediterranean sediments[J]. Letters in Applied Microbiology, 2010, 50(2): 234−236. doi: 10.1111/j.1472-765X.2009.02766.x
    [32]
    王世杰, 王翔, 卢桂兰, 等. 低温微生物修复石油烃类污染土壤研究进展[J]. 应用生态学报, 2011, 22(4): 1082−1088.

    Wang Shijie, Wang Xiang, Lu Guilan, et al. Bioremediation of petroleum hydrocarbon-contaminated soils by cold-adapted microorganisms: research advance[J]. Chinese Journal of Applied Ecology, 2011, 22(4): 1082−1088.
    [33]
    Cappello S, Corsi I, Patania S, et al. Characterization of five psychrotolerant Alcanivorax spp. strains isolated from antarctica[J]. Microorganisms, 2022, 11(1): 58. doi: 10.3390/microorganisms11010058
    [34]
    Koh J, Bairoliya S, Salta M, et al. Sediment-driven plastisphere community assembly on plastic debris in tropical coastal and marine environments[J]. Environment International, 2023, 179: 108153. doi: 10.1016/j.envint.2023.108153
    [35]
    Khandare S D, Chaudhary D R, Jha B. Marine bacterial biodegradation of low-density polyethylene (LDPE) plastic[J]. Biodegradation, 2021, 32(2): 127−143. doi: 10.1007/s10532-021-09927-0
    [36]
    Bitalac J M S, Lantican N B, Gomez N C F, et al. Attachment of potential cultivable primo-colonizing bacteria and its implications on the fate of low-density polyethylene (LDPE) plastics in the marine environment[J]. Journal of Hazardous Materials, 2023, 451: 131124. doi: 10.1016/j.jhazmat.2023.131124
    [37]
    Wilkes R A, Aristilde L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp. : Capabilities and challenges[J]. Journal of Applied Microbiology, 2017, 123(3): 582−593. doi: 10.1111/jam.13472
    [38]
    Bacha A U R, Nabi I, Zaheer M, et al. Biodegradation of macro- and micro-plastics in environment: A review on mechanism, toxicity, and future perspectives[J]. Science of the Total Environment, 2023, 858: 160108. doi: 10.1016/j.scitotenv.2022.160108
    [39]
    Lv Shiwei, Cui Kexin, Zhao Sufang, et al. Continuous generation and release of microplastics and nanoplastics from polystyrene by plastic-degrading marine bacteria[J]. Journal of Hazardous Materials, 2024, 465: 133339. doi: 10.1016/j.jhazmat.2023.133339
    [40]
    Liu R, Xu H, Zhao S, et al. Polyethylene terephthalate (PET)-degrading bacteria in the pelagic deep-sea sediments of the Pacific Ocean[J]. Environ Pollut, 2024, 352:124131.
    [41]
    Auta H S, Emenike C U, Jayanthi B, et al. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127: 15−21.
    [42]
    Guo Wenbin, Duan Jingjing, Shi Zhengguang, et al. Biodegradation of PET by the membrane-anchored PET esterase from the marine bacterium Rhodococcus pyridinivorans P23[J]. Communications Biology, 2023, 6(1): 1090.
    [43]
    Yan Zhengfei, Wang Lei, Xia Wei, et al. Synergistic biodegradation of poly(ethylene terephthalate) using Microbacterium oleivorans and Thermobifida fusca cutinase[J]. Applied Microbiology and Biotechnology, 2021, 105(11): 4551−4560.
    [44]
    Habib S, Iruthayam A, Abd Shukor M Y, et al. Biodeterioration of untreated polypropylene microplastic particles by antarctic bacteria[J]. Polymers, 2020, 12(11): 2616.
    [45]
    Won S J, Yim J H, Kim H K. Functional production, characterization, and immobilization of a cold-adapted cutinase from Antarctic Rhodococcus sp.[J]. Protein Expression and Purification, 2022, 195−196: 106077.
    [46]
    Zhang Ailin, Hou Yanhua, Wang Quanfu, et al. Characteristics and polyethylene biodegradation function of a novel coldadapted bacterial laccase from Antarctic sea ice psychrophile Psychrobacter sp. NJ228[J]. Journal of Hazardous Materials, 2022, 439: 129656.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (94) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return