Citation: | Lu Yang,Zhao Haibo,Zhao Jiawei, et al. Simulation error diagnosis of the seasonal evolution of sea ice thickness during MOSAiC in-situ observation[J]. Haiyang Xuebao,2024, 46(6):26–39 doi: 10.12284/hyxb2024065 |
[1] |
WMO. WMO Sea-Ice Nomenclature[R]. Geneva: WMO, 2014.
|
[2] |
Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35(1): L01703.
|
[3] |
Kwok R, Rothrock D A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008[J]. Geophysical Research Letters, 2009, 36(15): L15501.
|
[4] |
Maslanik J A, Fowler C, Stroeve J, et al. A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss[J]. Geophysical Research Letters, 2007, 34(24): L24501.
|
[5] |
Parkinson C L, Digirolamo N E. Sea ice extents continue to set new records: Arctic, Antarctic, and global results[J]. Remote Sensing of Environment, 2021, 267: 112753. doi: 10.1016/j.rse.2021.112753
|
[6] |
Stroeve J C, Markus T, Boisvert L, et al. Changes in Arctic melt season and implications for sea ice loss[J]. Geophysical Research Letters, 2014, 41(4): 1216−1225. doi: 10.1002/2013GL058951
|
[7] |
Kim Y H, Min S K, Gillett N P, et al. Observationally-constrained projections of an ice-free Arctic even under a low emission scenario[J]. Nature Communications, 2023, 14(1): 3139. doi: 10.1038/s41467-023-38511-8
|
[8] |
Walter N M, National S, Julienne S. An updated assessment of the changing arctic sea ice cover[J]. Oceanography, 2022, 35(3/4): 10−19.
|
[9] |
Lindsay R, Schweiger A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations[J]. The Cryosphere, 2015, 9(1): 269−283. doi: 10.5194/tc-9-269-2015
|
[10] |
Kwok R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018)[J]. Environmental Research Letters, 2018, 13(10): 105005. doi: 10.1088/1748-9326/aae3ec
|
[11] |
Hibler W D. Modeling a variable thickness sea ice cover[J]. Monthly Weather Review, 1980, 108(12): 1943−1973. doi: 10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2
|
[12] |
邱博, 张录军, 储敏, 等. 气候系统模式对于北极海冰模拟分析[J]. 极地研究, 2015, 27(1): 47−55.
Qiu Bo, Zhang Lujun, Chu Min, et al. Performance analysis of Arctic sea ice simulation in climate system models[J]. Chinese Journal of Polar Research, 2015, 27(1): 47−55.
|
[13] |
朱清照, 闻新宇. 中国CMIP5模式对未来北极海冰的模拟偏差[J]. 气候变化研究进展, 2016, 12(4): 276−285.
Zhu Qingzhao, Wen Xinyu. Performance of Chinese climate models in simulating Arctic sea-ice in CMIP5 experiments[J]. Climate Change Research, 2016, 12(4): 276−285.
|
[14] |
Liu Jiping, Song Mirong, Horton R M, et al. Reducing spread in climate model projections of a September ice-free Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(31): 12571−12576.
|
[15] |
Zhang Jinlun, Rothrock D A. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates[J]. Monthly Weather Review, 2003, 131(5): 845−861. doi: 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2
|
[16] |
Chen Lanying, Wu Renhao, Shu Qi, et al. The Arctic sea ice thickness change in CMIP6’s historical simulations[J]. Advances in Atmospheric Sciences, 2023, 40(12): 2331−2343. doi: 10.1007/s00376-022-1460-4
|
[17] |
王梓琦. 我国CMIP6模式北极海冰厚度比较及误差来源分析[D]. 南京: 南京信息工程大学, 2023.
Wang Ziqi. Comparison and error source analysis of Arctic sea ice thickness in China’s CMIP6 models[D]. Nanjing: Nanjing University of Information Science and Technology, 2023.
|
[18] |
Hunke E, Allard R, Bailey D A, et al. CICE-Consortium/CICE: CICE version 6.0. 0[EB/OL]. https://doi.org/10.5281/zenodo.1900639,2018-10-04/2024-02-04.
|
[19] |
Long Mengyuan, Zhang Lujun, Hu Siyu, et al. Multi-aspect assessment of CMIP6 models for Arctic sea ice simulation[J]. Journal of Climate, 2021, 34(4): 1515−1529. doi: 10.1175/JCLI-D-20-0522.1
|
[20] |
Xu Mengliu, Li Junde. Assessment of sea ice thickness simulations in the CMIP6 models with CICE components[J]. Frontiers in Marine Science, 2023, 10: 1223772. doi: 10.3389/fmars.2023.1223772
|
[21] |
Hunke E, Allard R, Bailey D, et al. CICE Consortium/Icepack version 1.1.0[EB/OL]. http://doi.org/10.5281/zenodo.1891650,2018-10-03/2024-02-04.
|
[22] |
Gu Fengguan, Yang Qinghua, Kauker F, et al. The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica[J]. The Cryosphere, 2022, 16(5): 1873−1887. doi: 10.5194/tc-16-1873-2022
|
[23] |
曹淑涛, 苏洁, 李涛, 等. 基于Icepack海冰柱模式的融池反照率模拟研究[J]. 海洋学报, 2021, 43(7): 63−74.
Cao Shutao, Su Jie, Li Tao, et al. Study on melt pond albedo based on Icepack sea ice column model[J]. Haiyang Xuebao, 2021, 43(7): 63−74.
|
[24] |
Plante M, Lemieux J F, Tremblay L B, et al. Using icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics[J]. The Cryosphere, 2024, 18(4): 1685−1708. doi: 10.5194/tc-18-1685-2024
|
[25] |
肖峰, 张胜凯, 李佳星, 等. 基于CryoSat-2卫星测高数据的北极海冰厚度变化研究[J]. 中国科学: 地球科学, 2021, 51(7): 1059-1069.
Xiao Feng, Zhang Shengkai, Li Jiaxing, et al. Arctic sea ice thickness variations from CryoSat-2 satellite altimetry data[J]. Science China Earth Sciences, 2021, 64(7): 1080-1089.
|
[26] |
Shupe M D, Rex M, Blomquist B, et al. Overview of the MOSAiC expedition: atmosphere[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 00060. doi: 10.1525/elementa.2021.00060
|
[27] |
Nicolaus M, Perovich D K, Spreen G, et al. Overview of the MOSAiC expedition: snow and sea ice[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 000046. doi: 10.1525/elementa.2021.000046
|
[28] |
Rabe B, Heuzé C, Regnery J, et al. Overview of the MOSAiC expedition: physical oceanography[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 00062. doi: 10.1525/elementa.2021.00062
|
[29] |
雷瑞波. 我国参与MOSAiC气候多学科漂流冰站计划的概况[J]. 极地研究, 2020, 32(4): 596−600.
Lei Ruibo. Contributions to the MOSAIC from China[J]. Chinese Journal of Polar Research, 2020, 32(4): 596−600.
|
[30] |
Wagner D N, Shupe M D, Cox C, et al. Snowfall and snow accumulation during the MOSAiC winter and spring seasons[J]. The Cryosphere, 2022, 16(6): 2373−2402. doi: 10.5194/tc-16-2373-2022
|
[31] |
Rinke A, Cassano J J, Cassano E N, et al. Meteorological conditions during the MOSAiC expedition: normal or anomalous?[J]. Elementa: Science of the Anthropocene, 2021, 9(1): 00023. doi: 10.1525/elementa.2021.00023
|
[32] |
Hoppmann M, Kuznetsov I, Fang Y C, et al. Mesoscale observations of temperature and salinity in the Arctic Transpolar Drift: a high-resolution dataset from the MOSAiC Distributed Network[J]. Earth System Science Data, 2022, 14(11): 4901−4921. doi: 10.5194/essd-14-4901-2022
|
[33] |
Jackson K, Wilkinson J, Maksym T, et al. A novel and low-cost sea ice mass balance buoy[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(11): 2676−2688. doi: 10.1175/JTECH-D-13-00058.1
|
[34] |
赵杰臣, 杨清华, 程斌, 等. 基于温度链浮标获取南极普里兹湾积雪和固定冰厚度的研究[J]. 海洋学报, 2017, 39(11): 115−127.
Zhao Jiechen, Yang Qinghua, Cheng Bin, et al. Snow and land-fast sea ice thickness derived from thermistor chain buoy in the Prydz Bay, Antarctic[J]. Haiyang Xuebao, 2017, 39(11): 115−127.
|
[35] |
郝光华, 杨清华, 赵杰臣, 等. 2016年南极中山站固定冰冰厚观测分析[J]. 海洋学报, 2019, 41(9): 26−39.
Hao Guanghua, Yang Qinghua, Zhao Jiechen, et al. Observation and analysis of landfast ice arounding Zhongshan Station, Antarctic in 2016[J]. Haiyang Xuebao, 2019, 41(9): 26−39.
|
[36] |
Lei Ruibo, Cheng B, Hoppmann M, et al. Seasonality and timing of sea ice mass balance and heat fluxes in the Arctic transpolar drift during 2019–2020[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 000089. doi: 10.1525/elementa.2021.000089
|
[37] |
Webster M A, Holland M, Wright N C, et al. Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results[J]. Elementa: Science of the Anthropocene, 2022, 10(1): 000072. doi: 10.1525/elementa.2021.000072
|
[38] |
Niehaus H, Spreen G, Birnbaum G, et al. Sea ice melt pond fraction derived from Sentinel-2 data: along the MOSAiC drift and Arctic-wide[J]. Geophysical Research Letters, 2023, 50(5): e2022GL102102. doi: 10.1029/2022GL102102
|
[39] |
Oggier M, Salganik E, Whitmore L, et al. First-year sea-ice salinity, temperature, density, oxygen and hydrogen isotope composition from the main coring site (MCS-FYI) during MOSAiC legs 1 to 4 in 2019/2020[EB/OL]. https://doi.pangaea.de/10.1594/PANGAEA.956732,2024-02-04.
|
[40] |
Thorndike A S, Rothrock D A, Maykut G A, et al. The thickness distribution of sea ice[J]. Journal of Geophysical Research, 1975, 80(33): 4501−4513. doi: 10.1029/JC080i033p04501
|
[41] |
Semtner Jr A J. A model for the thermodynamic growth of sea ice in numerical investigations of climate[J]. Journal of Physical Oceanography, 1976, 6(3): 379−389. doi: 10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2
|
[42] |
Bitz C M, Lipscomb W H. An energy-conserving thermodynamic model of sea ice[J]. Journal of Geophysical Research: Oceans, 1999, 104(C7): 15669−15677. doi: 10.1029/1999JC900100
|
[43] |
Turner A K, Hunke E C, Bitz C M. Two modes of sea-ice gravity drainage: a parameterization for large-scale modeling[J]. Journal of Geophysical Research: Oceans, 2013, 118(5): 2279−2294. doi: 10.1002/jgrc.20171
|
[44] |
Holland M M, Bailey D A, Briegleb B P, et al. Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice[J]. Journal of Climate, 2012, 25(5): 1413−1430. doi: 10.1175/JCLI-D-11-00078.1
|
[45] |
Flocco D, Feltham D L. A continuum model of melt pond evolution on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2007, 112(C8): C08016.
|
[46] |
Flocco D, Feltham D L, Turner A K. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model[J]. Journal of Geophysical Research: Oceans, 2010, 115(C8): C08012.
|
[47] |
Flocco D, Schroeder D, Feltham D L, et al. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09032.
|
[48] |
Flocco D, Feltham D L, Bailey E, et al. The refreezing of melt ponds on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 647−659. doi: 10.1002/2014JC010140
|
[49] |
Hunke E C, Hebert D A, Lecomte O. Level-ice melt ponds in the Los Alamos sea ice model, CICE[J]. Ocean Modelling, 2013, 71: 26−42. doi: 10.1016/j.ocemod.2012.11.008
|
[50] |
Huwald H, Tremblay L B, Blatter H. Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05009.
|
[51] |
张慧敏, 金梅兵, 祁第. 常数和变化积雪密度方案诊断计算积雪厚度的敏感性研究[J]. 海洋学报, 2022, 44(7): 47−57.
Zhang Huimin, Jin Meibing, Qi Di. Sensitivity study of constant and variable snow density schemes in diagnosing and calculating snow depth[J]. Haiyang Xuebao, 2022, 44(7): 47−57.
|
[52] |
尹豪, 苏洁, Cheng Bin. 积雪密度演变对北极积雪深度模拟的影响[J]. 海洋学报, 2021, 43(7): 75−89.
Yin Hao, Su Jie, Cheng Bin. The effect of snow density evolution on modelled snow depth in the Arctic[J]. Haiyang Xuebao, 2021, 43(7): 75−89.
|
[53] |
Turner A K, Hunke E C. Impacts of a mushy-layer thermodynamic approach in global sea-ice simulations using the CICE sea-ice model[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 1253−1275. doi: 10.1002/2014JC010358
|
[54] |
Brandt R E, Warren S G, Worby A P, et al. Surface albedo of the Antarctic sea ice zone[J]. Journal of Climate, 2005, 18(17): 3606−3622. doi: 10.1175/JCLI3489.1
|
[55] |
杨清华, 刘骥平, 孙启振, 等. 2010年春季南极固定冰反照率变化特征及其影响因子[J]. 地球物理学报, 2013, 56(7): 2177−2184. doi: 10.6038/cjg20130705
Yang Qinghua, Liu Jiping, Sun Qizhen, et al. Surface albedo variation and its influencing factors over costal fast ice around Zhongshan station, Antarcticain austral spring of 2010[J]. Chinese Journal of Geophysics, 2013, 56(7): 2177−2184. doi: 10.6038/cjg20130705
|