Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Lou Hongcheng,Zhang Yongchui,Jiang Deliang, et al. Investigation methods of submesoscale fronts at the edge of mesoscale eddies in the ocean[J]. Haiyang Xuebao,2024, 46(6):1–13 doi: 10.12284/hyxb2024063
Citation: Lou Hongcheng,Zhang Yongchui,Jiang Deliang, et al. Investigation methods of submesoscale fronts at the edge of mesoscale eddies in the ocean[J]. Haiyang Xuebao,2024, 46(6):1–13 doi: 10.12284/hyxb2024063

Investigation methods of submesoscale fronts at the edge of mesoscale eddies in the ocean

doi: 10.12284/hyxb2024063
  • Received Date: 2024-01-10
  • Rev Recd Date: 2024-05-16
  • Available Online: 2024-07-15
  • Publish Date: 2024-06-01
  • There are strong exchange of matter and energy and complex dynamic processes between mesoscale eddies and submesoscale fronts at their edges. At present, the investigation of mesoscale eddies has become more and more mature, but because of the small spatial scale and rapid time change of the submesoscale front, it is a great challenge to investigate its three-dimensional structure. In this paper, a new method is proposed to investigate the submesoscale front at the edge of the ocean mesoscale eddy. Firstly, the submesoscale front at the edge of the mesoscale eddies is identified using multi-source satellite remote sensing data, and then the multi-type shipborne survey equipment is used for multidisciplinary investigation. A submesoscale front at the edge of typical eddies in the Kuroshio Extension area from August 21 to August 25, 2023 is investigated by using this method. The survey method proposed in this paper can effectively identify, track and investigate the submesoscale front at the edge of mesoscale eddies.
  • loading
  • [1]
    Verma V, Sarkar S. Lagrangian three-dimensional transport and dispersion by submesoscale currents at an upper-ocean front[J]. Ocean Modelling, 2021, 165: 101844. doi: 10.1016/j.ocemod.2021.101844
    [2]
    Ito D, Suga T, Kouketsu S, et al. Spatiotemporal evolution of submesoscale filaments at the periphery of an anticyclonic mesoscale eddy north of the Kuroshio Extension[J]. Journal of Oceanography, 2021, 77(5): 763−780. doi: 10.1007/s10872-021-00607-4
    [3]
    Kuroda H, Toya Y. High-resolution sea surface temperatures derived from Landsat 8: a study of submesoscale frontal structures on the pacific shelf off the Hokkaido coast, Japan[J]. Remote Sensing, 2020, 12(20): 3326. doi: 10.3390/rs12203326
    [4]
    McWilliams J C. Submesoscale currents in the ocean[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2189): 20160117. doi: 10.1098/rspa.2016.0117
    [5]
    Mahadevan A, Tandon A. An analysis of mechanisms for submesoscale vertical motion at ocean fronts[J]. Ocean Modelling, 2006, 14(3/4): 241−256.
    [6]
    Siegelman L, O’Toole M, Flexas M, et al. Submesoscale ocean fronts act as biological hotspot for southern elephant seal[J]. Scientific Reports, 2019, 9(1): 5588. doi: 10.1038/s41598-019-42117-w
    [7]
    Bendtsen J, Sørensen L L, Daugbjerg N, et al. Phytoplankton diversity explained by connectivity across a mesoscale frontal system in the open ocean[J]. Scientific Reports, 2023, 13(1): 12117. doi: 10.1038/s41598-023-38831-1
    [8]
    Siegelman L, Klein P, Rivière P, et al. Enhanced upward heat transport at deep submesoscale ocean fronts[J]. Nature Geoscience, 2020, 13(1): 50−55. doi: 10.1038/s41561-019-0489-1
    [9]
    Thomas L N, Tandon A, Mahadevan A. Submesoscale processes and dynamics[M]//Hecht M W, Hasumi H. Ocean Modeling in an Eddying Regime. Washington: American Geophysical Union, 2008: 17-38.
    [10]
    张旭, 经志友, 郑瑞玺, 等. 黑潮延伸体海域典型涡旋的次中尺度特征分析[J]. 热带海洋学报, 2021, 40(6): 31−40. doi: 10.11978/2020152

    Zhang Xu, Jing Zhiyou, Zheng Ruixi, et al. Submesoscale characteristics of a typical anticyclonic mesoscale eddy in Kuroshio Extension[J]. Journal of Tropical Oceanography, 2021, 40(6): 31−40. doi: 10.11978/2020152
    [11]
    Jing Zhao, Wang Shengpeng, Wu Lixin, et al. Maintenance of mid-latitude oceanic fronts by mesoscale eddies[J]. Science Advances, 2020, 6(31): eaba7880. doi: 10.1126/sciadv.aba7880
    [12]
    张永垂, 楼鸿程, 姜德良, 等. 海洋次中尺度现象调查概述[J]. 海洋测绘, 2024, 44(3): 7−11, 17.

    Zhang Yongchui, Lou Hongcheng, Jiang Deliang, et al. Overview of oceanic submesoscales survey[J]. Hydrographic Surveying and Charting, 2024, 44(3): 7−11, 17.
    [13]
    Zhu Ruichen, Yang Haiyuan, Li Mingkui, et al. Observations reveal vertical transport induced by submesoscale front[J]. Scientific Reports, 2024, 14(1): 4407. doi: 10.1038/s41598-024-54940-x
    [14]
    Qiu Chunhua, He Benjun, Wang Dongxiao, et al. Mechanisms of a shelf submesoscale front in the northern South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 202: 104197. doi: 10.1016/j.dsr.2023.104197
    [15]
    Johnson L, Lee C M, D’Asaro E A, et al. Restratification at a California current upwelling front. Part I: observations[J]. Journal of Physical Oceanography, 2020, 50(5): 1455−1472. doi: 10.1175/JPO-D-19-0203.1
    [16]
    Shcherbina A Y, Sundermeyer M A, Kunze E, et al. The LatMix summer campaign: submesoscale stirring in the upper ocean[J]. Bulletin of the American Meteorological Society, 2015, 96(8): 1257−1279. doi: 10.1175/BAMS-D-14-00015.1
    [17]
    Poje A C, Özgökmen T M, Lipphardt Jr B L, et al. Submesoscale dispersion in the vicinity of the Deepwater Horizon spill[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12693−12698.
    [18]
    Garabato A C N, Yu Xiaolong, Callies J, et al. Kinetic energy transfers between mesoscale and submesoscale motions in the open ocean’s upper layers[J]. Journal of Physical Oceanography, 2022, 52(1): 75−97. doi: 10.1175/JPO-D-21-0099.1
    [19]
    Zhang Zhiwei, Zhang Xincheng, Qiu Bo, et al. Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays[J]. Journal of Physical Oceanography, 2021, 51(1): 187−206. doi: 10.1175/JPO-D-20-0100.1
    [20]
    Ding Yang, Xu Lixiao, Xie Shangping, et al. Submesoscale frontal instabilities modulate large-scale distribution of the winter deep mixed layer in the Kuroshio-Oyashio extension[J]. Journal of Geophysical Research: Oceans, 2022, 127(12): e2022JC018915. doi: 10.1029/2022JC018915
    [21]
    Chin T M, Vazquez-Cuervo J, Armstrong E M. A multi-scale high-resolution analysis of global sea surface temperature[J]. Remote Sensing of Environment, 2017, 200: 154−169. doi: 10.1016/j.rse.2017.07.029
    [22]
    Maturi E, Harris A, Mittaz J, et al. A new high-resolution sea surface temperature blended analysis[J]. Bulletin of the American Meteorological Society, 2017, 98(5): 1015−1026. doi: 10.1175/BAMS-D-15-00002.1
    [23]
    Good S, Fiedler E, Mao Chongyuan, et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses[J]. Remote Sensing, 2020, 12(4): 720. doi: 10.3390/rs12040720
    [24]
    Huang Boyin, Liu Chunying, Banzon V, et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1[J]. Journal of Climate, 2021, 34(8): 2923−2939. doi: 10.1175/JCLI-D-20-0166.1
    [25]
    Gould W J. From Swallow floats to Argo—the development of neutrally buoyant floats[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(3/4): 529−543.
    [26]
    D’Asaro E A. Performance of autonomous Lagrangian floats[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(6): 896−911. doi: 10.1175/1520-0426(2003)020<0896:POALF>2.0.CO;2
    [27]
    刘钊. 具有实时通信功能的新型海洋观测浮标的结构优化与控制系统研究[D]. 天津: 天津大学, 2009.

    Liu Zhao. Structure optimization and control system design of a new type of marine submersible buoy system with real time communication function[D]. Tianjin: Tianjin University, 2009.
    [28]
    Furlong A, Lamplugh M. In-situ underway sound velocity profiling for calibration of multibeam sounders using a moving vessel profiler (MVP)[J]. International Hydrographic Review, 2000, 1(2): 47-54.
    [29]
    任强, 于非, 刁新源, 等. 处理走航式海洋多参数剖面测量系统(MVP)温度和电导率滞后效应的方法[J]. 海洋科学, 2014, 38(8): 59−66. doi: 10.11759/hykx20130823002

    Ren Qiang, Yu Fei, Diao Xinyuan, et al. A data processing method on the hysteresis effect of temperature and conductivity of moving vessel profiler (MVP)[J]. Marine Sciences, 2014, 38(8): 59−66. doi: 10.11759/hykx20130823002
    [30]
    刘彦祥. ADCP技术发展及其应用综述[J]. 海洋测绘, 2016, 36(2): 45−49. doi: 10.3969/j.issn.1671-3044.2016.02.011

    Liu Yanxiang. Review on development of ADCP technology and its application[J]. Hydrographic Surveying and Charting, 2016, 36(2): 45−49. doi: 10.3969/j.issn.1671-3044.2016.02.011
    [31]
    Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
    [32]
    Isern-Fontanet J, García-Ladona E, Font J. Identification of marine eddies from Altimetric maps[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5): 772−778. doi: 10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2
    [33]
    Robinson S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23: 601−639. doi: 10.1146/annurev.fl.23.010191.003125
    [34]
    Nencioli F, Dong C M, Dickey T, et al. A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564−579. doi: 10.1175/2009JTECHO725.1
    [35]
    Souza J M A C, De Boyer Montégut C, Le Traon P Y. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean[J]. Ocean Science, 2011, 7(3): 317−334. doi: 10.5194/os-7-317-2011
    [36]
    Shao Mingming, Ortiz-Suslow D G, Haus B K, et al. The variability of winds and fluxes observed near submesoscale fronts[J]. Journal of Geophysical Research: Oceans, 2019, 124(11): 7756−7780. doi: 10.1029/2019JC015236
    [37]
    柴永平, 占祥生. MVP在综合调测中对多波束声速改正的应用[J]. 海洋技术学报, 2019, 38(6): 30−34.

    Chai Yongping, Zhan Xiangsheng. Application of the MVP for multi-beam sound velocity correction[J]. Journal of Ocean Technology, 2019, 38(6): 30−34.
    [38]
    Xi Jingyuan, Wang Yuntao, Feng Zhixuan, et al. Variability and intensity of the sea surface temperature front associated with the Kuroshio extension[J]. Frontiers in Marine Science, 2022, 9: 836469. doi: 10.3389/fmars.2022.836469
    [39]
    Kwon Y O, Alexander M A, Bond N A, et al. Role of the gulf stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: a review[J]. Journal of Climate, 2010, 23(12): 3249−3281. doi: 10.1175/2010JCLI3343.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (136) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return