Citation: | Sun Yafei,Zhang Yanwei,Lü Danni, et al. Spatial and temporal variations of sediment flux entering into the South China Sea from 2001 to 2020[J]. Haiyang Xuebao,2024, 46(6):98–113 doi: 10.12284/hyxb2024061 |
[1] |
Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean[M]. Cambridge: Cambridge University Press, 2011.
|
[2] |
Wu Ying, Eglinton T I, Zhang Jing, et al. Spatiotemporal variation of the quality, origin, and age of particulate organic matter transported by the Yangtze River (Changjiang)[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(9): 2908−2921. doi: 10.1029/2017JG004285
|
[3] |
Lyu Jixuan, Shi Yong, Zhang Shuo, et al. The reservoirs gradually changed the distribution, source, and flux of particulate organic carbon within the Changjiang River catchment[J]. Journal of Hydrology, 2023, 623: 129808. doi: 10.1016/j.jhydrol.2023.129808
|
[4] |
Wei Xing, Cai Shuqun, Ni Peitong, et al. Impacts of climate change and human activities on the water discharge and sediment load of the Pearl River, southern China[J]. Scientific Reports, 2020, 10(1): 16743. doi: 10.1038/s41598-020-73939-8
|
[5] |
远立国, 刘玉河, 乔光建. 滦河口入海沙量锐减对湿地生态环境影响[J]. 南水北调与水利科技, 2011, 9(4): 109−112,116.
Yuan Liguo, Liu Yuhe, Qiao Guangjian. Impacts of significant reduction of sediment flux into the sea in Luanhe River estuary on wetland ecological environment[J]. South-to-North Water Diversion and Water Science & Technology, 2011, 9(4): 109−112,116.
|
[6] |
Dethier E N, Renshaw C E, Magilligan F J. Rapid changes to global river suspended sediment flux by humans[J]. Science, 2022, 376(6600): 1447−1452. doi: 10.1126/science.abn7980
|
[7] |
Lu Xixi, Ran Lishan, Liu Shaomin, et al. Sediment loads response to climate change: a preliminary study of eight large Chinese rivers[J]. International Journal of Sediment Research, 2013, 28(1): 1−14. doi: 10.1016/S1001-6279(13)60013-X
|
[8] |
Liu Zhifei, Zhao Yulong, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238−273. doi: 10.1016/j.earscirev.2015.08.005
|
[9] |
蔡观强, 彭学超, 张玉兰. 南海沉积物物质来源研究的意义及其进展[J]. 海洋科学进展, 2011, 29(1): 113−121. doi: 10.3969/j.issn.1671-6647.2011.01.014
Cai Guanqiang, Peng Xuechao, Zhang Yulan. The Significances of and advances in the study of sediment sources in the South China Sea[J]. Advances in Marine Science, 2011, 29(1): 113−121. doi: 10.3969/j.issn.1671-6647.2011.01.014
|
[10] |
Lu Xixi, Siew R Y. Water discharge and sediment flux changes over the past decades in the Lower Mekong River: possible impacts of the Chinese dams[J]. Hydrology and Earth System Sciences, 2006, 10(2): 181−195. doi: 10.5194/hess-10-181-2006
|
[11] |
Hung C, Lin Guanwei, Kuo H L, et al. Impact of an extreme typhoon event on subsequent sediment discharges and rainfall-driven landslides in affected mountainous regions of Taiwan[J]. Geofluids, 2018, 2018: 8126518.
|
[12] |
朱樊, 欧素英, 张铄涵, 等. 基于MODIS影像的珠江口表层悬沙浓度反演及时空变化分析[J]. 泥沙研究, 2015(2): 67−73.
Zhu Fan, Ou Suying, Zhang Shuohan, et al. MODIS images-based retrieval and analysis of spatial-temporal change of superficial suspended sediment concentration in the Pearl River Estuary[J]. Journal of Sediment Research, 2015(2): 67−73.
|
[13] |
Hu Peng, Chen Wen, Wang Lin, et al. Revisiting the ENSO-monsoonal rainfall relationship: new insights based on an objective determination of the Asian summer monsoon duration[J]. Environmental Research Letters, 2022, 17(10): 104050. doi: 10.1088/1748-9326/ac97ad
|
[14] |
Liu Feng, Chen Hui, Cai Huayang, et al. Impacts of ENSO on multi-scale variations in sediment discharge from the Pearl River to the South China Sea[J]. Geomorphology, 2017, 293: 24−36. doi: 10.1016/j.geomorph.2017.05.007
|
[15] |
Walsh J P, Nittrouer C A. Understanding fine-grained river-sediment dispersal on continental margins[J]. Marine Geology, 2009, 263(1/4): 34−45.
|
[16] |
Guo Kai, Zou Tao, Jiang Dejuan, et al. Variability of Yellow River turbid plume detected with satellite remote sensing during water-sediment regulation[J]. Continental Shelf Research, 2017, 135: 74−85. doi: 10.1016/j.csr.2017.01.017
|
[17] |
Mertes L A K, Warrick J A. Measuring flood output from 110 coastal watersheds in California with field measurements and SeaWiFS[J]. Geology, 2001, 29(7): 659−662. doi: 10.1130/0091-7613(2001)029<0659:MFOFCW>2.0.CO;2
|
[18] |
Isabwe A. 大坝建设对九龙江流量和沉积物输运的影响评估[D]. 厦门: 厦门大学, 2014.
Isabwe A. Assessing the effects of dams on water discharge and sediment load variability in the Jiulong River[D]. Xiamen: Xiamen University, 2014.
|
[19] |
王宇飞, 刘秀娟, 王洋, 等. 近60年来韩江入海泥沙通量变化及其对邻近海域的影响[J]. 人民珠江, 2022, 43(10): 50−56.
Wang Yufei, Liu Xiujuan, Wang Yang, et al. Changes in sediment flux from Hanjiang River into the sea and its influence on adjacent sea areas over the last 60 years[J]. Pearl River, 2022, 43(10): 50−56.
|
[20] |
敖亮挺. 榕江流域多年水沙特性分析[J]. 人民珠江, 2023, 44(1): 78−86. doi: 10.3969/j.issn.1001-9235.2023.01.011
Ao Liangting. Analysis of water and sediment characteristics in Rongjiang River basin[J]. Pearl River, 2023, 44(1): 78−86. doi: 10.3969/j.issn.1001-9235.2023.01.011
|
[21] |
蔡绪军. 漠阳江流域荆山水文站悬移质泥沙特性探讨[J]. 广东水利水电, 2013(3): 29−31.
Cai Xujun. Study on suspended sediment characteristics of Jingshan Hydrology Station in Moyang River Basin[J]. Guangdong Water Resources and Hydropower, 2013(3): 29−31.
|
[22] |
张义宇. 鉴江干流水沙变化探讨[J]. 广东水利电力职业技术学院学报, 2022, 20(1): 8−10, 51. doi: 10.3969/j.issn.1672-2841.2022.01.004
Zhang Yiyu. Study on the change of runoff and sediment in the trunk of Jianjiang River[J]. Journal of Guangdong Polytechnic of Water Resources and Electric Engineering, 2022, 20(1): 8−10, 51. doi: 10.3969/j.issn.1672-2841.2022.01.004
|
[23] |
罗亚飞, 黄海军, 严立文. 广西大风江附近海域悬沙分布遥感反演与输移特征分析[C]//第十八届中国环境遥感应用技术论坛论文集. 西宁: 中国遥感应用协会环境遥感分会, 2014: 61−68.
Luo Yafei, Huang Haijun, Yan Liwen. Remote sensing inversion and transport characteristics of suspended sediment distribution in waters near Fengfeng River, Guangxi[C]//China Association of Remote Sensing Application. Xining: Environmental Remote Sensing Branch of China Remote Sensing Application Association, 2014: 61−68.
|
[24] |
欧芳兰, 邓建明, 卢远, 等. 钦江流域历史径流泥沙演变规律分析[J]. 大众科技, 2020, 22(10): 15−17, 28. doi: 10.3969/j.issn.1008-1151.2020.10.006
Ou Fanglan, Deng Jianming, Lu Yuan, et al. Analysis on the evolution law of historical runoff and sediment in Qinjiang River Basin[J]. Popular Science & Technology, 2020, 22(10): 15−17, 28. doi: 10.3969/j.issn.1008-1151.2020.10.006
|
[25] |
亢振军, 郭伟, 李杰, 等. 茅岭江入海口水质状况分析与评价[J]. 海洋科学前沿, 2017, 4(1): 7−16. doi: 10.12677/AMS.2017.41002
Kang Zhenjun, Guo Wei, Li Jie, et al. Water quality analysis and evaluation in Maolingjiang River inlet[J]. Advances in Marine Sciences, 2017, 4(1): 7−16. doi: 10.12677/AMS.2017.41002
|
[26] |
Phuong H T, Okubo K, Uddin M A. Geochemistry and sediment in the main stream of the Ca River basin, Vietnam: weathering process, solute-discharge relationships, and reservoir impact[J]. Acta Geochimica, 2019, 38(5): 627−641. doi: 10.1007/s11631-019-00327-z
|
[27] |
Latif S D, Chong K L, Ahmed A N, et al. Sediment load prediction in Johor river: deep learning versus machine learning models[J]. Applied Water Science, 2023, 13(3): 79. doi: 10.1007/s13201-023-01874-w
|
[28] |
Prabakaran K, Nagarajan R, Eswaramoorthi S, et al. Environmental significance and geochemical speciation of trace elements in Lower Baram River sediments[J]. Chemosphere, 2019, 219: 933−953. doi: 10.1016/j.chemosphere.2018.11.158
|
[29] |
Chua S D X, Lu Xixi. Sediment load crisis in the Mekong River Basin: severe reductions over the decades[J]. Geomorphology, 2022, 419: 108484. doi: 10.1016/j.geomorph.2022.108484
|
[30] |
Carter L, Gavey R, Talling P, et al. Insights into submarine geohazards from breaks in subsea telecommunication cables[J]. Oceanography, 2014, 27(2): 58−67. doi: 10.5670/oceanog.2014.40
|
[31] |
Zhang Yanwei, Liu Zhifei, Zhao Yulong, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 2018, 46(8): 675−678. doi: 10.1130/G45178.1
|
[32] |
Mulligan M, Van Soesbergen A, Sáenz L. GOODD, a global dataset of more than 38, 000 georeferenced dams[J]. Scientific Data, 2020, 7(1): 31. doi: 10.1038/s41597-020-0362-5
|
[33] |
Lu Xiaoqin, Yu Hui, Ying Ming, et al. Western North Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690−699. doi: 10.1007/s00376-020-0211-7
|
[34] |
Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
|
[35] |
Kao S J, Lee T Y, Milliman J D. Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2005, 16(3): 653−675. doi: 10.3319/TAO.2005.16.3.653(T)
|
[36] |
Zhang Wei, Wei Xiaoyan, Zheng Jinhai, et al. Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves[J]. Continental Shelf Research, 2012, 38: 35−46. doi: 10.1016/j.csr.2012.02.017
|
[37] |
Sun Pengcheng, Wu Yiping, Yang Zhifeng, et al. Can the grain-for-green program really ensure a low sediment load on the Chinese Loess Plateau?[J]. Engineering, 2019, 5(5): 855−864. doi: 10.1016/j.eng.2019.07.014
|
[38] |
Quang N H, Loc H H, Park E. Characterizing sediment load variability in the red river system using empirical orthogonal function analysis: implications for water resources management in data poor regions[J]. Journal of Hydrology, 2023, 624: 129891. doi: 10.1016/j.jhydrol.2023.129891
|
[39] |
国家能源局. 国家发展改革委关于水电建设管理主要河流划分有关事项的通知[EB/OL]. (2012-01-04). http://www.nea.gov.cn/2012-01/04/c_131260325.htm.
National Energy Administration. Notice of the national development and reform commission on matters related to the division of major rivers in the management of hydropower construction[EB/OL]. (2012-01-04). http://www.nea.gov.cn/2012-01/04/c_131260325.htm.
|
[40] |
水利部. 水利部关于印发《中小河流治理建设管理办法》的通知[EB/OL]. (2023-07-01). https://www.gov.cn/gongbao/2023/issue_10686/202309/content_6902590.html.
Ministry of Water Resources the People’s Republic of China. Measures for the administration of the governance and construction of small and medium-sized rivers[EB/OL]. (2023-07-01). https://www.gov.cn/gongbao/2023/issue_10686/202309/content_6902590.html.
|
[41] |
Dadson S J, Hovius N, Chen H, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen[J]. Nature, 2003, 426(6967): 648−651. doi: 10.1038/nature02150
|
[42] |
Walling D E. The changing sediment load of the Mekong River[J]. AMBIO: A Journal of the Human Environment, 2008, 37(3): 150−157. doi: 10.1579/0044-7447(2008)37[150:TCSLOT]2.0.CO;2
|
[43] |
Xue Zuo, Liu J P, Ge Qian. Changes in hydrology and sediment delivery of the Mekong River in the last 50 years: connection to damming, monsoon, and ENSO[J]. Earth Surface Processes and Landforms, 2011, 36(3): 296−308. doi: 10.1002/esp.2036
|
[44] |
Unverricht D, Nguyen T C, Heinrich C, et al. Suspended sediment dynamics during the inter-monsoon season in the subaqueous Mekong Delta and adjacent shelf, southern Vietnam[J]. Journal of Asian Earth Sciences, 2014, 79: 509−519. doi: 10.1016/j.jseaes.2012.10.008
|
[45] |
李珏, 乔璐璐, DucCuong L, 等. 南海北部湾表层悬浮体分布规律[J]. 海洋地质与第四纪地质, 2020, 40(2): 10−18.
Li Jue, Qiao Lulu, DucCuong L, et al. Surficial distribution of suspended sediment in Beibu Gulf of the South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 10−18.
|