Citation: | Jiang Renchuan,Su Jie,Mu Longjiang. Assessments and analysis on simulation of high-resolution sea ice leads in the Arctic[J]. Haiyang Xuebao,2024, 46(8):74–88 doi: 10.12284/hyxb2024053 |
[1] |
Maykut G A. Large-scale heat exchange and ice production in the central Arctic[J]. Journal of Geophysical Research: Oceans, 1982, 87(C10): 7971−7984. doi: 10.1029/JC087iC10p07971
|
[2] |
Maykut G A. Energy exchange over young sea ice in the central Arctic[J]. Journal of Geophysical Research: Oceans, 1978, 83(C7): 3646−3658. doi: 10.1029/JC083iC07p03646
|
[3] |
Rampal P, Weiss J, Marsan D. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979−2007[J]. Journal of Geophysical Research: Oceans, 2009, 114(C5): C05013.
|
[4] |
Alam A, Curry J A. Evolution of new ice and turbulent fluxes over freezing winter leads[J]. Journal of Geophysical Research: Oceans, 1998, 103(C8): 15783−15802. doi: 10.1029/98JC01188
|
[5] |
Maslanik J A, Key J. On treatments of fetch and stability sensitivity in large-area estimates of sensible heat flux over sea ice[J]. Journal of Geophysical Research: Oceans, 1995, 100(C3): 4573−4584. doi: 10.1029/94JC02204
|
[6] |
Bröhan D, Kaleschke L. A nine-year climatology of Arctic sea ice lead orientation and frequency from AMSR-E[J]. Remote Sensing, 2014, 6(2): 1451−1475. doi: 10.3390/rs6021451
|
[7] |
屈猛. 北极波弗特海冰间水道的遥感提取及其热力学效应研究[D]. 武汉: 武汉大学, 2021.
Qu Meng. Detection of sea ice leads in the Beaufort Sea using remote sensing imagery and estimation of energy budget over leads surface[D]. Wuhan: Wuhan University, 2021.
|
[8] |
Lindsay R W, Rothrock D A. Arctic sea ice leads from advanced very high resolution radiometer images[J]. Journal of Geophysical Research: Oceans, 1995, 100(C3): 4533−4544. doi: 10.1029/94JC02393
|
[9] |
Hoffman J P, Ackerman S A, Liu Yinghui, et al. The detection and characterization of Arctic Sea ice leads with satellite imagers[J]. Remote Sensing, 2019, 11(5): 521. doi: 10.3390/rs11050521
|
[10] |
Willmes S, Heinemann G. Sea-ice wintertime lead frequencies and regional characteristics in the Arctic, 2003−2015[J]. Remote Sensing, 2016, 8(1): 4.
|
[11] |
Qu Meng, Pang Xiaoping, Zhao Xi, et al. Spring leads in the Beaufort Sea and its interannual trend using Terra/MODIS thermal imagery[J]. Remote Sensing of Environment, 2021, 256: 112342. doi: 10.1016/j.rse.2021.112342
|
[12] |
Willmes S, Heinemann G. Pan-Arctic lead detection from MODIS thermal infrared imagery[J]. Annals of Glaciology, 2015, 56(69): 29−37. doi: 10.3189/2015AoG69A615
|
[13] |
Hoffman J P, Ackerman S A, Liu Yinghui, et al. Application of a convolutional neural network for the detection of sea ice leads[J]. Remote Sensing, 2021, 13(22): 4571. doi: 10.3390/rs13224571
|
[14] |
Hoffman J P, Ackerman S A, Liu Yinghui, et al. A 20-year climatology of sea ice leads detected in infrared satellite imagery using a convolutional neural network[J]. Remote Sensing, 2022, 14(22): 5763. doi: 10.3390/rs14225763
|
[15] |
Lindsay R W, Zhang Jinlun, Rothrock D A. Sea-ice deformation rates from satellite measurements and in a model[J]. Atmosphere-Ocean, 2003, 41(1): 35−47. doi: 10.3137/ao.410103
|
[16] |
Girard L, Weiss J, Molines J M, et al. Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation[J]. Journal of Geophysical Research: Oceans, 2009, 114(C8): C08015.
|
[17] |
Hutter N, Losch M, Menemenlis D. Scaling properties of Arctic sea ice deformation in a high-resolution viscous-plastic sea ice model and in satellite observations[J]. Journal of Geophysical Research: Oceans, 2018, 123(1): 672−687. doi: 10.1002/2017JC013119
|
[18] |
Wang Qiang, Danilov S, Jung T, et al. Sea ice leads in the Arctic Ocean: model assessment, interannual variability and trends[J]. Geophysical Research Letters, 2016, 43(13): 7019−7027. doi: 10.1002/2016GL068696
|
[19] |
Bouillon S, Rampal P. Presentation of the dynamical core of neXtSIM, a new sea ice model[J]. Ocean Modelling, 2015, 91: 23−37. doi: 10.1016/j.ocemod.2015.04.005
|
[20] |
Dansereau V, Weiss J, Saramito P, et al. A Maxwell elasto-brittle rheology for sea ice modelling[J]. The Cryosphere, 2016, 10(3): 1339−1359. doi: 10.5194/tc-10-1339-2016
|
[21] |
Girard L, Bouillon S, Weiss J, et al. A new modeling framework for sea-ice mechanics based on elasto-brittle rheology[J]. Annals of Glaciology, 2011, 52(57): 123−132. doi: 10.3189/172756411795931499
|
[22] |
Hutter N, Zampieri L, Losch M. Leads and ridges in Arctic sea ice from RGPS data and a new tracking algorithm[J]. The Cryosphere, 2019, 13(2): 627−645. doi: 10.5194/tc-13-627-2019
|
[23] |
Hutter N, Losch M. Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations[J]. The Cryosphere, 2020, 14(1): 93−113. doi: 10.5194/tc-14-93-2020
|
[24] |
Andreas E L, Murphy B. Bulk transfer coefficients for heat and momentum over leads and polynyas[J]. Journal of Physical Oceanography, 1986, 16(11): 1875−1883. doi: 10.1175/1520-0485(1986)016<1875:BTCFHA>2.0.CO;2
|
[25] |
Alam A, Curry J A. Determination of surface turbulent fluxes over leads in Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 1997, 102(C2): 3331−3343. doi: 10.1029/96JC03606
|
[26] |
Marcq S, Weiss J. Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere[J]. The Cryosphere, 2012, 6(1): 143−156. doi: 10.5194/tc-6-143-2012
|
[27] |
Qu Meng, Pang Xiaoping, Zhao Xi, et al. Estimation of turbulent heat flux over leads using satellite thermal images[J]. The Cryosphere, 2019, 13(6): 1565−1582. doi: 10.5194/tc-13-1565-2019
|
[28] |
Losch M, Menemenlis D, Campin J M, et al. On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations[J]. Ocean Modelling, 2010, 33(1/2): 129−144.
|
[29] |
Fraser A D, Massom R A, Michael K J. A method for compositing polar MODIS satellite images to remove cloud cover forlandfast sea-ice detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(9): 3272−3282. doi: 10.1109/TGRS.2009.2019726
|
[30] |
Key J, Stone R, Maslanik J, et al. The detectability of sea-ice leads in satellite data as a function of atmospheric conditions and measurement scale[J]. Annals of Glaciology, 1993, 17: 227−232. doi: 10.3189/S026030550001288X
|
[31] |
屈猛, 赵羲, 庞小平, 等. 北极冰间水道区域的物理过程和遥感观测研究进展[J]. 地球科学进展, 2022, 37(4): 382−391. doi: 10.11867/j.issn.1001-8166.2021.102
Qu Meng, Zhao Xi, Pang Xiaoping, et al. Review of Arctic sea ice leads: physics and remote sensing[J]. Advances in Earth Science, 2022, 37(4): 382−391. doi: 10.11867/j.issn.1001-8166.2021.102
|
[32] |
Beitsch A, Kaleschke L, Kern S. Investigating high-resolution AMSR2 sea ice concentrations during the February 2013 fracture event in the Beaufort Sea[J]. Remote Sensing, 2014, 6(5): 3841−3856. doi: 10.3390/rs6053841
|
[33] |
Schulson E M, Hibler W D. The fracture of ice on scales large and small: Arctic leads and wing cracks[J]. Journal of Glaciology, 1991, 37(127): 319−322. doi: 10.3189/S0022143000005748
|