Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Liu Xiaoyan,Song Xiaojiang,Guo Anboyu, et al. An intelligent algorithm for constructing quasi-real-time sea surface wind field[J]. Haiyang Xuebao,2024, 46(6):51–65 doi: 10.12284/hyxb2024051
Citation: Liu Xiaoyan,Song Xiaojiang,Guo Anboyu, et al. An intelligent algorithm for constructing quasi-real-time sea surface wind field[J]. Haiyang Xuebao,2024, 46(6):51–65 doi: 10.12284/hyxb2024051

An intelligent algorithm for constructing quasi-real-time sea surface wind field

doi: 10.12284/hyxb2024051
  • Received Date: 2024-01-24
  • Rev Recd Date: 2024-05-10
  • Available Online: 2024-07-12
  • Publish Date: 2024-06-01
  • In this paper, the correction model of CMA-GFS numerical model wind field is constructed based on the deep learning U-Net network, and the construction of the quasi-real-time sea surface wind field is rapidly accomplished by interpolation method using the corrected wind field with the correction model as the background field (CMA-GFS_Unet), and using the scatterometer sea surface wind data from the four satellites, namely, HY-2B/2C/2D and MetOp-B as the observation data. This intelligent algorithm can realize the generation of global sea surface fusion wind field (Fusion_QRT) with a spatial resolution of 0.25° and a temporal resolution of 6 hours in quasi-real time with a lag of 3 hours. The CMA-GFS, CMA-GFS_Unet and Fusion_QRT wind fields are evaluated using the CCMP fusion wind field data and the 10 m wind vector data from the Chinese offshore buoys, respectively.The results show that the quality of the CMA-GFS_Unet wind field has been significantly improved, and the quality of the wind speed of the Fusion_QRT wind field has been further improved but the quality of the wind direction has been slightly reduced. The mean absolute errors (MAEs) of wind speed are 1.13 m/s, 0.89 m/s and 0.84 m/s for the three wind fields by using CCMP data as reference, and the CMA-GFS_Unet and Fusion_QRT wind fields have improved by 21.3% and 25.7% compared to the CMA-GFS, respectively; while the MAEs of wind direction are 17.5°, 15.5° and 16°, and have improved by11.3% and 8.6%, respectively.The MAEs of wind speed are 1.50 m/s, 1.36 m/s and 1.28 m/s for the three wind fields by using buoy data as reference, and have improved by 9.5% and 14.7% , respectively; while the MAEs of wind direction are 23.3°, 22.7° and 24.0°, and have improved by 3.0% and −3.9% , respectively.
  • loading
  • [1]
    张巍, 杜超凡, 郭安博宇, 等. 一种机器学习海面风场快速融合的方法[J]. 海洋学报, 2022, 44(11): 144−158.

    Zhang Wei, Du Chaofan, Guo Anboyu, et al. Sea surface wind field smart fusion base on machine learning method[J]. HaiyangXuebao, 2022, 44(11): 144−158.
    [2]
    柳婧, 宋晓姜, 王彰贵. 海面风场融合技术综述[J]. 海洋预报, 2018, 35(3): 81−87.

    Liu Jing, Song Xiaojiang, Wang Zhanggui. Review of fusion technology of sea surface wind[J]. Marine Forecasts, 2018, 35(3): 81−87.
    [3]
    旷芳芳, 张友权, 张俊鹏, 等. 3种海面风场资料在台湾海峡的比较和评估[J]. 海洋学报, 2015, 37(5): 44−53.

    Kuang Fangfang, Zhang Youquan, Zhang Junpeng, et al. Comparison and evaluation of three sea surface wind products in Taiwan Strait[J]. HaiyangXuebao, 2015, 37(5): 44−53.
    [4]
    詹思玙, 齐琳琳, 卢伟. 基于CCMP资料和现场观测资料的西北太平洋海面风场特征分析[J]. 海洋预报, 2017, 34(2): 10−20.

    Zhan Siyu, Qi Linlin, Lu Wei. Analysis of sea surface wind in northwest Pacific based on CCMP satellite data[J]. Marine Forecasts, 2017, 34(2): 10−20.
    [5]
    金铸钰, 刘凯, 郭安博宇, 等. 基于CCMP的西北太平洋海面风场特征分析[J]. 海洋预报, 2022, 39(2): 20−33.

    Jin Zhuyu, Liu Kai, Guo Anboyu, et al. Characteristics analysis of the sea surface wind in the Northwest Pacific basedon CCMP satellite data[J]. MarineForecasts, 2022, 39(2): 20−33.
    [6]
    林晓娟, 李响, 刘晓燕, 等. EC预报数据在中国近海的适用性研究[J]. 海洋预报, 2023, 40(6): 51−66.

    Lin Xiaojuan, Li Xiang, Liu Xiaoyan, et al. Applicability of EC forecast data in China’s offshore waters[J]. Marine Forecasts, 2023, 40(6): 51−66.
    [7]
    郑崇伟. 基于CCMP风场的近22年中国海海表风场特征分析[J]. 气象与减灾研究, 2011, 34(3): 41−46.

    Zheng Chongwei. Sea surface wind field analysis in the China seaduring the last 22 years with CCMP wind field[J]. Meteorology and Disaster Reduction Research, 2011, 34(3): 41−46.
    [8]
    柳婧. 基于最优插值方法的中国近海海面风场资料融合研究[D]. 北京: 国家海洋环境预报中心, 2018.

    Liu Jing. Research on data fusion of sea surface wind in China’s offshore based on optimal interpolation method[D]. Beijing: NationalMarine Environmental Forecasting Center, 2018.
    [9]
    唐焕丽, 姚琴, 吕晓莹, 等. 多源卫星融合的广东海域海面风场特征[J]. 遥感信息, 2020, 35(1): 117−122.

    Tang Huanli, Yao Qin, Lü Xiaoying, et al. Characteristics of sea surface wind field in Guangdong sea area with multi-source satellite fusion[J]. Remote Sensing Information, 2020, 35(1): 117−122.
    [10]
    吕思睿. 多源卫星海面风场融合研究[D]. 南京: 南京信息工程大学, 2023.

    Lü Sirui. Multi-source satellite sea surface wind field fusion study[D]. Nanjing: Nanjing University of Information Science & Technology, 2023.
    [11]
    齐亚琳, 林明森. 数据融合技术在海洋二号卫星数据中的应用[J]. 航天器工程, 2012, 21(3): 117−123.

    Qi Yalin, Lin Mingsen. Application of the data fusion technique in HY-2 satellite data[J]. Spacecraft Engineering, 2012, 21(3): 117−123.
    [12]
    Zou Juhong, Lin Minsen, Zou Bin, et al. Fusion of sea surface wind vector data acquired by multi-source active and passive sensors in China sea[J]. International Journal of Remote Sensing, 2017, 38(23): 6477−6491. doi: 10.1080/01431161.2017.1356486
    [13]
    刘宇昕. 星载微波散射计数据和数值模式产品海面风场混合分析研究[D]. 北京: 国家海洋环境预报研究中心, 2013.

    Liu Yuxin. A study on the mixing analysis of sea surface wind field with satellite microwave scatterometer data and numerical model products[D]. Beijing: NationalMarine Environmental Forecasting Center, 2013.
    [14]
    李莎, 舒红, 徐正全. 利用时空Kriging进行气温插值研究[J]. 武汉大学学报•信息科学版, 2012, 37(2): 237−241.

    Li Sha, Shu Hong, Xu Zhengquan. Interpolation of temperature based on spatial-temporal kriging[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 237−241.
    [15]
    许遐祯, 高健, 张康宇, 等. 基于多源数据的中国近海风场融合方法研究[J]. 杭州师范大学学报(自然科学版), 2016, 15(3): 325−330.

    Xu Xiazhen, Gao Jian, Zhang Kangyu. Fusion method of China’s offshore wind field based on multi-source data[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2016, 15(3): 325−330.
    [16]
    项杰, 王慧鹏, 王春明, 等. 南海海面风场变分融合的初步研究[J]. 热带气象学报, 2015, 31(2): 153−160.

    Xiang Jie, Wang Huipeng, Wang Chunming, et al. Preliminary study on variational blending of surface vector winds in South China Sea[J]. Journal of Tropical Meteorology, 2015, 31(2): 153−160.
    [17]
    邹婷. 2DVAR算法在局地海表流场和风场融合中的应用[D]. 南京: 南京信息工程大学, 2020.

    Zou Ting. Application of 2DVAR algorithms to the fusion of localized sea surface current and wind fields[D]. Nanjing: Nanjing University of Information Science and Technology, 2020.
    [18]
    吴新荣, 王喜冬, 李威, 等. 海洋数据同化与数据融合技术应用综述[J]. 海洋技术学报, 2015, 34(3): 97−103.

    Wu Xinrong, Wang Xidong, Li Wei, et al. Review of the application of ocean data assimilation and data fusion techniques[J]. Journal of Ocean Technology, 2015, 34(3): 97−103.
    [19]
    张东翔. 多源卫星海面风场产品检验及融合研究[D]. 长沙: 国防科技大学, 2018.

    Zhang Dongxiang. Research of multi-source satellite sea surface wind validation and data fusion[D]. Changsha: National University of Defense Technology, 2018.
    [20]
    李明悝, 侯一筠. 利用QuikSCAT/NCEP混合风场及WAVEWATCH模拟东中国海风浪场[J]. 海洋科学, 2005, 29(6): 9−12.

    Li Mingkui, HouYijun. Simulating wind-wave field of the East China Seas with QuikSCAT/NCEP blended wind and WAVEWATCH[J]. Marine Sciences, 2005, 29(6): 9−12.
    [21]
    Atlas R, Hoffman R N, Ardizzone J, et al. Across-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications[J]. Bulletin of the American Meteorological Society, 2011, 92(2): 157−174.
    [22]
    Mears C A, Scott J, Wentz F J, et al. A near-real-time version of the Cross-Calibrated Multiplatform (CCMP) ocean surface wind velocity data set[J]. Journal of Geophysical Research: Oceans, 2019, 124(10): 6997−7010. doi: 10.1029/2019JC015367
    [23]
    Mears C, Lee T, Ricciardulli L, et al. Improving the accuracy of the Cross-Calibrated Multi-Platform (CCMP) ocean vector winds[J]. Remote Sensing, 2022, 14(17): 4230. doi: 10.3390/rs14174230
    [24]
    王慧, 隋伟辉. 基于CCMP风场的中国近海18个海区海面大风季节变化特征分析[J]. 气象科技, 2013, 41(4): 720−725.

    Wang Hui, Sui Weihui. Seasonal variation analysis of sea surface winds in China Sea areas with CCMP wind field data[J]. Meteorological Science and Technology, 2013, 41(4): 720−725.
    [25]
    刘建强, 叶小敏, 兰友国. 我国海洋卫星遥感大数据及其应用服务[J]. 大数据, 2022, 8(2): 75−88.

    Liu Jianqiang, Ye Xiaomin, Lan Youguo. Remote sensing big data from Chinese oceansatellites and its application service[J]. Big Data Research, 2022, 8(2): 75−88.
    [26]
    林明森, 何贤强, 贾永君, 等. 中国海洋卫星遥感技术进展[J]. 海洋学报, 2019, 41(10): 99−112.

    Lin Mingsen, He Xianqiang, JiaYongjun, et al. Advances in marine satellite remote sensing technology in China[J]. HaiyangXuebao, 2019, 41(10): 99−112.
    [27]
    Park S H, Yoo J, Son D, et al. Improved calibration of wind estimates from advanced scatterometer MetOp-B in Korean Seas using deep neural network[J]. Remote Sensing, 2021, 13(20): 4164. doi: 10.3390/rs13204164
    [28]
    Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the18th International Conferenceon Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Munich: Springer, 2015.
    [29]
    朱延和. 基于U-net神经网络的新疆地面气温和风的预报订正研究[D]. 南京: 南京信息工程大学, 2023.

    Zhu Yanhe. Prediction correction of surface temperature and wind in Xinjiang based on U-net neural network[D]. Nanjing: Nanjing University of Information Science &Technology, 2023.
    [30]
    张延彪, 陈明轩, 韩雷, 等. 数值天气预报多要素深度学习融合订正方法[J]. 气象学报, 2022, 80(1): 153−167. doi: 10.11676/qxxb2021.066

    Zhang Yanbiao, Chen Mingxuan, Han Lei, et al. Multi-element deep learning fusion correction method for numerical weather prediction[J]. ActaMeteorologicaSinica, 2022, 80(1): 153−167 doi: 10.11676/qxxb2021.066
    [31]
    Han Lei, Chen Mingxuan, Chen Kangkai, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts[J]. Advances in Atmospheric Sciences, 2021, 38(9): 1444−1459. doi: 10.1007/s00376-021-0215-y
    [32]
    张延彪, 宋林烨, 陈明轩, 等. 基于卷积神经网络的京津冀地区高分辨率格点预报偏差订正试验[J]. 大气科学学报, 2022, 45(6): 850−862.

    Zhang Yanbiao, Song Linye, Chen Mingxuan, et al. A study of error correction for high-resolution gridded forecast based on a convolutional neural network in the Beijing-Tianjin-Hebei Region[J]. Transactions of Atmospheric Sciences, 2022, 45(6): 850−862.
    [33]
    Lagerquist R, Stewart J Q, Ebert-Uphoff I, et al. Using deep learning to nowcast the spatial coverage of convection from Himawari-8 satellite data[J]. Monthly Weather Review, 2021, 149(12): 3897−3921. doi: 10.1175/MWR-D-21-0096.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article views (122) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return