Citation: | Zhou Sangjun,Wei Xiaoran,Xie Xinzhe, et al. A multivariate wave forecasting model for the Zhoushan archipelago using Long Short-Term Memory deep neural networks[J]. Haiyang Xuebao,2024, 46(6):14–25 doi: 10.12284/hyxb2024049 |
[1] |
Qin Yue, Su Changyu, Chu Dongdong, et al. A review of application of machine learning in storm surge problems[J]. Journal of Marine Science and Engineering, 2023, 11(9): 1729. doi: 10.3390/jmse11091729
|
[2] |
Mahjoobi J, Mosabbeb E A. Prediction of significant wave height using regressive support vector machines[J]. Ocean Engineering, 2009, 36(5): 339−347. doi: 10.1016/j.oceaneng.2009.01.001
|
[3] |
王燕, 钟建, 张志远. 支持向量回归的机器学习方法在海浪预测中的应用[J]. 海洋预报, 2020, 37(3): 29−34.
Wang Yan, Zhong Jian, Zhang Zhiyuan. Application of support vector regression in significant wave height forecasting[J]. Marine Forecasts, 2020, 37(3): 29−34.
|
[4] |
Mahjoobi J, Etemad-Shahidi A. An alternative approach for the prediction of significant wave heights based on classification and regression trees[J]. Applied Ocean Research, 2008, 30(3): 172−177. doi: 10.1016/j.apor.2008.11.001
|
[5] |
Ellenson A, Pei Yuanli, Wilson G, et al. An application of a machine learning algorithm to determine and describe error patterns within wave model output[J]. Coastal Engineering, 2020, 157: 103595. doi: 10.1016/j.coastaleng.2019.103595
|
[6] |
Hu R, Fang F, Pain C C, et al. Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method[J]. Journal of Hydrology, 2019, 575: 911−920. doi: 10.1016/j.jhydrol.2019.05.087
|
[7] |
石绥祥, 王蕾, 余璇, 等. 长短期记忆神经网络在叶绿素a浓度预测中的应用[J]. 海洋学报, 2020, 42(2): 134−142.
Shi Suixiang, Wang Lei, Yu Xuan, et al. Application of long term and short term memory neural network in prediction of chlorophyll a concentration[J]. Haiyang Xuebao, 2020, 42(2): 134−142.
|
[8] |
Jain P, Deo M C. Real-time wave forecasts off the western Indian coast[J]. Applied Ocean Research, 2007, 29(1/2): 72−79.
|
[9] |
Gu Chengcheng, Li Hua. Review on deep learning research and applications in wind and wave energy[J]. Energies, 2022, 15(4): 1510. doi: 10.3390/en15041510
|
[10] |
Deo M C, Jha A, Chaphekar A S, et al. Neural networks for wave forecasting[J]. Ocean Engineering, 2001, 28(7): 889−898. doi: 10.1016/S0029-8018(00)00027-5
|
[11] |
Peres D J, Iuppa C, Cavallaro L, et al. Significant wave height record extension by neural networks and reanalysis wind data[J]. Ocean Modelling, 2015, 94: 128−140. doi: 10.1016/j.ocemod.2015.08.002
|
[12] |
James S C, Zhang Yushan, O’Donncha F. A machine learning framework to forecast wave conditions[J]. Coastal Engineering, 2018, 137: 1−10. doi: 10.1016/j.coastaleng.2018.03.004
|
[13] |
Law Y Z, Santo H, Lim K Y, et al. Deterministic wave prediction for unidirectional sea-states in real-time using artificial neural network[J]. Ocean Engineering, 2020, 195: 106722. doi: 10.1016/j.oceaneng.2019.106722
|
[14] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
|
[15] |
赵勇, 苏丹, 邹丽, 等. 基于LSTM神经网络的畸形波预测[J]. 华中科技大学学报(自然科学版), 2020, 48(7): 47−51.
Zhao Yong, Su Dan, Zou Li, et al. Rogue wave prediction based on LSTM neural network[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(7): 47−51.
|
[16] |
高丽斌. 基于深度学习的台湾海峡及周边海域波浪预报研究[D]. 福州: 福建农林大学, 2019.
Gao Libin. Wave forecasting of Taiwan Strait and its surrounding waters based on deep learning[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
|
[17] |
Fan Shuntao, Xiao Nianhao, Dong Sheng. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205: 107298. doi: 10.1016/j.oceaneng.2020.107298
|
[18] |
Minuzzi F C, Farina L. A deep learning approach to predict significant wave height using long short-term memory[J]. Ocean Modelling, 2023, 181: 102151. doi: 10.1016/j.ocemod.2022.102151
|
[19] |
王军, 王国欣. 宁波舟山港沿海航道保护范围研究与探讨[J]. 中国水运, 2020(4): 51−53.
Wang Jun, Wang Guoxin. Research and discussion on the protection scope of coastal navigation channels in Ningbo Zhoushan Port[J]. China Water Transport, 2020(4): 51−53.
|
[20] |
Xu Honghui, Deng Yong. Dependent evidence combination based on shearman coefficient and pearson coefficient[J]. IEEE Access, 2018, 6: 11634−11640. doi: 10.1109/ACCESS.2017.2783320
|
[21] |
Jebli I, Belouadha FZ, Kabbaj M I, et al. Prediction of solar energy guided by pearson correlation using machine learning[J]. Energy, 2021, 224: 120109. doi: 10.1016/j.energy.2021.120109
|
[22] |
Abadi M, Barham P, Chen Jianmin, et al. TensorFlow: a system for large-scale machine learning[C]//Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. Savannah: USENIX Association, 2016: 265−283.
|
[23] |
Ketkar N. Introduction to keras[M]//Ketkar N. Deep Learning with Python: A Hands-on Introduction. Berkeley: Apress, 2017: 97−111.
|