Citation: | Ke Li’na,You Jinhao,Fan Jianchao. Marine cage aquaculture information extraction based on SLA-UNet[J]. Haiyang Xuebao,2024, 46(5):93–102 doi: 10.12284/hyxb2024044 |
[1] |
Wang Ming, Mao Dehua, Xiao Xiangming, et al. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021[J]. Remote Sensing of Environment, 2023, 284: 113347. doi: 10.1016/j.rse.2022.113347
|
[2] |
FAO. The State of World Fisheries and Aquaculture 2020[EB/OL]. [2023-03-05]. http://doi.org/10.4060/ca9229en
|
[3] |
Mao Dehua, Yang Hong, Wang Zongming, et al. Reverse the hidden loss of China’s wetlands[J]. Science, 2022, 376(6597): 1061.
|
[4] |
邓莎萨, 张帆, 尹嫱等. 面向目视解译的全极化SAR船只精细化特征表征方法[J/OL]. [2024-02-21]. 雷达学报, 2023. https://radars.ac.cn/cn/article/doi/ 10.12000/JR23078. doi: 10.12000/JR23078
Deng Shasa, Zhang Fan, Yin Qiang, et al. Refined ship feature characterization method of full-polarimetric synthetic aperture radar for visual interpretation[J/OL]. Journal of Radars, 2023. https://radars.ac.cn/cn/article/doi/ 10.12000/JR23078. doi: 10.12000/JR23078
|
[5] |
Schepaschenko D, See L, Lesiv M, et al. Recent advances in forest observation with visual interpretation of very high-resolution imagery[J]. Surveys in Geophysics, 2019, 40(4): 839−862. doi: 10.1007/s10712-019-09533-z
|
[6] |
汪静平, 吴小丹, 马杜娟, 等. 基于机器学习的遥感反演: 不确定性因素分析[J]. 遥感学报, 2023, 27(3): 790−801.
Wang Jingping, Wu Xiaodan, Ma Dujuan, et al. Remote sensing retrieval based on machine learning algorithm: uncertainty analysis[J]. Journal of Remote Sensing, 2023, 27(3): 790−801.
|
[7] |
Virnodkar S S, Pachghare V K, Patil V C, et al. Remote sensing and machine learning for crop water stress determination in various crops: A critical review[J]. Precision Agriculture, 2020, 21(5): 1121−1155. doi: 10.1007/s11119-020-09711-9
|
[8] |
Maxwell A E, Warner T A, Guillén L A. Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—Part 2: Recommendations and best practices[J]. Remote Sensing, 2021, 13(13): 2591. doi: 10.3390/rs13132591
|
[9] |
Kechagias-Stamatis O, Aouf N. Fusing deep learning and sparse coding for SAR ATR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 785−797. doi: 10.1109/TAES.2018.2864809
|
[10] |
Seto K C, Fragkias M. Mangrove conversion and aquaculture development in Vietnam: A remote sensing-based approach for evaluating the Ramsar Convention on Wetlands[J]. Global Environmental Change, 2007, 17(3/4): 486−500.
|
[11] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504−507. doi: 10.1126/science.1127647
|
[12] |
Long J, Shelhamer E, Darrell T. Fully convolutional Networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431−3440.
|
[13] |
Li Jiayi, Zhang Hongyan, Zhang Liangpei. Supervised segmentation of very high resolution images by the use of extended morphological attribute profiles and a sparse transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(8): 1409−1413. doi: 10.1109/LGRS.2013.2294241
|
[14] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234−241.
|
[15] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
|
[16] |
Zheng Shuai, Jayasumana S, Romera-Paredes B, et al. Conditional random fields as recurrent neural networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1529−1537.
|
[17] |
Chen Yang, Fan Rongshuang, Yang Xiucheng, et al. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning[J]. Water, 2018, 10(5): 585. doi: 10.3390/w10050585
|
[18] |
刘岳明, 杨晓梅, 王志华, 等. 基于深度学习RCF模型的三都澳筏式养殖区提取研究[J]. 海洋学报, 2019, 41(4): 119−130.
Liu Yueming, Yang Xiaomei, Wang Zhihua, et al. Extracting raft aquaculture areas in Sanduao from high-resolution remote sensing images using RCF[J]. Haiyang Xuebao, 2019, 41(4): 119−130.
|
[19] |
Liu Chenxi, Jiang Tao, Zhang Zhen, et al. Extraction method of offshore mariculture area under weak signal based on multisource feature fusion[J]. Journal of Marine Science and Engineering, 2020, 8(2): 99. doi: 10.3390/jmse8020099
|
[20] |
柯丽娜, 翟宇宁, 范剑超. 深度边缘光谱U-Net海水网箱养殖信息提取[J]. 海洋学报, 2022, 44(2): 132−142.
Ke Lina, Zhai Yuning, Fan Jianchao. Marine cage aquaculture information extraction based on deep edge spectral U-Net[J]. Haiyang Xuebao, 2022, 44(2): 132−142.
|