Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
Ke Li’na,You Jinhao,Fan Jianchao. Marine cage aquaculture information extraction based on SLA-UNet[J]. Haiyang Xuebao,2024, 46(5):93–102 doi: 10.12284/hyxb2024044
Citation: Ke Li’na,You Jinhao,Fan Jianchao. Marine cage aquaculture information extraction based on SLA-UNet[J]. Haiyang Xuebao,2024, 46(5):93–102 doi: 10.12284/hyxb2024044

Marine cage aquaculture information extraction based on SLA-UNet

doi: 10.12284/hyxb2024044
  • Received Date: 2023-09-14
  • Rev Recd Date: 2023-12-19
  • Available Online: 2024-08-19
  • Publish Date: 2024-05-01
  • Cage aquaculture is one of the most important types of marine aquaculture. Different types of cages have varying shapes in remote sensing images, and the background is complex. Previous methods for cage extraction have not been able to fully simulate human visual behavior and efficiently utilize spectral information. To address these issues, we propose a Spectral Loopy Attention U-Net (SLA-UNet) network model for cage aquaculture information extraction. The model utilizes the Random Forest (RF) algorithm based on the Estimation of Scale Parameter (ESP) to remove redundant spectral information after band operations. It also incorporates a human-like attention mechanism to enhance the important feature channels that affect cage information extraction. Additionally, edge completion is performed to supplement the loss information, achieving high-precision extraction of cage aquaculture information. We selected Zhanjiang City, Guangdong Province and Lingao County, as the study areas. Comparisons were made with the extraction results of the Canny algorithm, Otsu algorithm, PCA_Kmeans algorithm, RF algorithm based on ESP, and the U-Net model. The extraction accuracy of the SLA-UNet model for nearshore cages is 98.3%, and the average extraction accuracy for deep-sea cages is 98.9%, validating the effectiveness of the SLA-UNet model in cage aquaculture recognition.
  • loading
  • [1]
    Wang Ming, Mao Dehua, Xiao Xiangming, et al. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021[J]. Remote Sensing of Environment, 2023, 284: 113347. doi: 10.1016/j.rse.2022.113347
    [2]
    FAO. The State of World Fisheries and Aquaculture 2020[EB/OL]. [2023-03-05]. http://doi.org/10.4060/ca9229en
    [3]
    Mao Dehua, Yang Hong, Wang Zongming, et al. Reverse the hidden loss of China’s wetlands[J]. Science, 2022, 376(6597): 1061.
    [4]
    邓莎萨, 张帆, 尹嫱等. 面向目视解译的全极化SAR船只精细化特征表征方法[J/OL]. [2024-02-21]. 雷达学报, 2023. https://radars.ac.cn/cn/article/doi/ 10.12000/JR23078. doi: 10.12000/JR23078

    Deng Shasa, Zhang Fan, Yin Qiang, et al. Refined ship feature characterization method of full-polarimetric synthetic aperture radar for visual interpretation[J/OL]. Journal of Radars, 2023. https://radars.ac.cn/cn/article/doi/ 10.12000/JR23078. doi: 10.12000/JR23078
    [5]
    Schepaschenko D, See L, Lesiv M, et al. Recent advances in forest observation with visual interpretation of very high-resolution imagery[J]. Surveys in Geophysics, 2019, 40(4): 839−862. doi: 10.1007/s10712-019-09533-z
    [6]
    汪静平, 吴小丹, 马杜娟, 等. 基于机器学习的遥感反演: 不确定性因素分析[J]. 遥感学报, 2023, 27(3): 790−801.

    Wang Jingping, Wu Xiaodan, Ma Dujuan, et al. Remote sensing retrieval based on machine learning algorithm: uncertainty analysis[J]. Journal of Remote Sensing, 2023, 27(3): 790−801.
    [7]
    Virnodkar S S, Pachghare V K, Patil V C, et al. Remote sensing and machine learning for crop water stress determination in various crops: A critical review[J]. Precision Agriculture, 2020, 21(5): 1121−1155. doi: 10.1007/s11119-020-09711-9
    [8]
    Maxwell A E, Warner T A, Guillén L A. Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—Part 2: Recommendations and best practices[J]. Remote Sensing, 2021, 13(13): 2591. doi: 10.3390/rs13132591
    [9]
    Kechagias-Stamatis O, Aouf N. Fusing deep learning and sparse coding for SAR ATR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 785−797. doi: 10.1109/TAES.2018.2864809
    [10]
    Seto K C, Fragkias M. Mangrove conversion and aquaculture development in Vietnam: A remote sensing-based approach for evaluating the Ramsar Convention on Wetlands[J]. Global Environmental Change, 2007, 17(3/4): 486−500.
    [11]
    Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504−507. doi: 10.1126/science.1127647
    [12]
    Long J, Shelhamer E, Darrell T. Fully convolutional Networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431−3440.
    [13]
    Li Jiayi, Zhang Hongyan, Zhang Liangpei. Supervised segmentation of very high resolution images by the use of extended morphological attribute profiles and a sparse transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(8): 1409−1413. doi: 10.1109/LGRS.2013.2294241
    [14]
    Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234−241.
    [15]
    Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
    [16]
    Zheng Shuai, Jayasumana S, Romera-Paredes B, et al. Conditional random fields as recurrent neural networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1529−1537.
    [17]
    Chen Yang, Fan Rongshuang, Yang Xiucheng, et al. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning[J]. Water, 2018, 10(5): 585. doi: 10.3390/w10050585
    [18]
    刘岳明, 杨晓梅, 王志华, 等. 基于深度学习RCF模型的三都澳筏式养殖区提取研究[J]. 海洋学报, 2019, 41(4): 119−130.

    Liu Yueming, Yang Xiaomei, Wang Zhihua, et al. Extracting raft aquaculture areas in Sanduao from high-resolution remote sensing images using RCF[J]. Haiyang Xuebao, 2019, 41(4): 119−130.
    [19]
    Liu Chenxi, Jiang Tao, Zhang Zhen, et al. Extraction method of offshore mariculture area under weak signal based on multisource feature fusion[J]. Journal of Marine Science and Engineering, 2020, 8(2): 99. doi: 10.3390/jmse8020099
    [20]
    柯丽娜, 翟宇宁, 范剑超. 深度边缘光谱U-Net海水网箱养殖信息提取[J]. 海洋学报, 2022, 44(2): 132−142.

    Ke Lina, Zhai Yuning, Fan Jianchao. Marine cage aquaculture information extraction based on deep edge spectral U-Net[J]. Haiyang Xuebao, 2022, 44(2): 132−142.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article views (88) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return