Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
Gu Rong,Zhang Dong,Qian Linfeng, et al. Refined remote sensing classification of Yancheng coastal wetland considering tide-level changes and vegetation phenological characteristics on the GEE platform[J]. Haiyang Xuebao,2024, 46(5):103–115 doi: 10.12284/hyxb2024030
Citation: Gu Rong,Zhang Dong,Qian Linfeng, et al. Refined remote sensing classification of Yancheng coastal wetland considering tide-level changes and vegetation phenological characteristics on the GEE platform[J]. Haiyang Xuebao,2024, 46(5):103–115 doi: 10.12284/hyxb2024030

Refined remote sensing classification of Yancheng coastal wetland considering tide-level changes and vegetation phenological characteristics on the GEE platform

doi: 10.12284/hyxb2024030
  • Received Date: 2023-07-31
  • Rev Recd Date: 2023-11-22
  • Available Online: 2024-03-06
  • Publish Date: 2024-05-01
  • Coastal wetlands have important economic and ecological value. Rapid and accurate monitoring of the status of coastal wetlands is of great significance for the protection and management of coastal wetland resources. Due to factors such as the variability of the tide-level changes, similarity of vegetation spectra, and frequent cloud cover, remote sensing monitoring of coastal wetlands faced certain challenges. In this paper, we proposed a multi-technology coupled remote sensing classification method of coastal wetlands that considers tide-level changes and vegetation phenological characteristics. Based on the Google Earth Engine (GEE) platform, the Fmask (Function of mask) algorithm was first performed for cloud testing and cloud removal processing. Then, the S-G (Savitzky-Golay) filtering algorithm was used to reconstruct NDVI time series data and extract vegetation phenological characteristic parameters. In this phase, the random forest algorithm was applied for the classification of four vegetation types namely Phragmites australi, Suaeda salsa, Spartina alterniflora, and Imperata cylindrical. Finally, the Maximum Spectral Index Composite (MSIC) algorithm was used to generate composite images of the highest and lowest tide levels. The tidal flats and seawater were precisely extracted using the Otsu algorithm based on these two composite images. Combining these feature types, the refined remote sensing classification of coastal wetlands was ideally obtained. The results showed that start-of-season time, end-of-season time, length of season, base value, amplitude, and small seasonal integral were the six key vegetation phenological characteristic parameters for distinguishing different types of coastal wetland vegetation. Applying this method to classify coastal wetlands on the Yancheng coast, the overall classification accuracy was 96.50%, and the Kappa coefficient reached 0.957 1. Among the wetland vegetation, the highest user accuracy was 96.59% for Spartina alterniflora, followed by P. australi and Suaeda salsa, and the lowest was 93.55% for Imperata cylindrical. Compared with object-oriented methods, our method can extract the complete range of tidal flats, and the overall accuracy is improved by 10.25%, reflecting the potential application of vegetation phenological characteristics in remote sensing monitoring of dynamic changes in coastal wetlands.
  • loading
  • [1]
    解雪峰, 孙晓敏, 吴涛, 等. 互花米草入侵对滨海湿地生态系统的影响研究进展[J]. 应用生态学报, 2020, 31(6): 2119−2128.

    Xie Xuefeng, Sun Xiaomin, Wu Tao, et al. Impacts of Spartina alterniflora invasion on coastal wetland ecosystem: Advances and prospects[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 2119−2128.
    [2]
    Kirwan M L, Megonigal J P. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 2013, 504(7478): 53−60. doi: 10.1038/nature12856
    [3]
    Gabler C A, Osland M J, Grace J B, et al. Macroclimatic change expected to transform coastal wetland ecosystems this century[J]. Nature Climate Change, 2017, 7(2): 142−147. doi: 10.1038/nclimate3203
    [4]
    刘瑞清, 李加林, 孙超, 等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报, 2021, 76(7): 1680−1692. doi: 10.11821/dlxb202107008

    Liu Ruiqing, Li Jialin, Sun Chao, et al. Classification of Yancheng coastal wetland vegetation based on vegetation phenological characteristics derived from Sentinel-2 time-series[J]. Acta Geographica Sinica, 2021, 76(7): 1680−1692. doi: 10.11821/dlxb202107008
    [5]
    Chung C H. Forty years of ecological engineering with Spartina plantations in China[J]. Ecological Engineering, 2006, 27(1): 49−57. doi: 10.1016/j.ecoleng.2005.09.012
    [6]
    Tang Long, Gao Yang, Wang Chenghuan, et al. A plant invader declines through its modification to habitats: A case study of a 16-year chronosequence of Spartina alterniflora invasion in a salt marsh[J]. Ecological Engineering, 2012, 49: 181−185. doi: 10.1016/j.ecoleng.2012.08.024
    [7]
    Zeng Jing, Sun Yonghua, Cao Peirun, et al. A phenology-based vegetation index classification (PVC) algorithm for coastal salt marshes using Landsat 8 images[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 110: 102776. doi: 10.1016/j.jag.2022.102776
    [8]
    Murray N J, Phinn S R, Clemens R S, et al. Continental scale mapping of tidal flats across East Asia using the Landsat archive[J]. Remote Sensing, 2012, 4(11): 3417−3426. doi: 10.3390/rs4113417
    [9]
    张晨宇, 陈沈良, 李鹏, 等. 现行黄河口保护区典型湿地植被时空动态遥感监测[J]. 海洋学报, 2022, 44(1): 125−136.

    Zhang Chenyu, Chen Shenliang, Li Peng, et al. Spatiotemporal dynamic remote sensing monitoring of typical wetland vegetation in the Current Huanghe River Estuary Reserve[J]. Haiyang Xuebao, 2022, 44(1): 125−136.
    [10]
    Zhang Zhen, Xu Nan, Li Yangfan, et al. Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features[J]. Remote Sensing of Environment, 2022, 269: 112799. doi: 10.1016/j.rse.2021.112799
    [11]
    Dong Jinwei, Xiao Xiangming, Menarguez M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine[J]. Remote Sensing of Environment, 2016, 185: 142−154. doi: 10.1016/j.rse.2016.02.016
    [12]
    程丽娜, 钟才荣, 李晓燕, 等. Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类[J]. 遥感学报, 2022, 26(2): 348−357. doi: 10.11834/jrs.20211311

    Cheng Li’na, Zhong Cairong, Li Xiaoyan, et al. Rapid and automatic classification of intertidal wetlands based on intensive time series Sentinel-2 images and Google Earth Engine[J]. National Remote Sensing Bulletin, 2022, 26(2): 348−357. doi: 10.11834/jrs.20211311
    [13]
    Sun Chao, Li Jialin, Liu Yongchao, et al. Tracking annual changes in the distribution and composition of saltmarsh vegetation on the Jiangsu coast of China using Landsat time series-based phenological parameters[J]. Remote Sensing of Environment, 2023, 284: 113370. doi: 10.1016/j.rse.2022.113370
    [14]
    Jia Mingming, Wang Zongming, Mao Dehua, et al. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2021, 255: 112285. doi: 10.1016/j.rse.2021.112285
    [15]
    Sun Chao, Liu Yongxue, Zhao Saishuai, et al. Classification mapping and species identification of salt marshes based on a short-time interval NDVI time-series from HJ-1 optical imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 45: 27−41. doi: 10.1016/j.jag.2015.10.008
    [16]
    王敏钰, 罗毅, 张正阳, 等. 植被物候参数遥感提取与验证方法研究进展[J]. 遥感学报, 2022, 26(3): 431−455. doi: 10.11834/j.issn.1007-4619.2022.3.ygxb202203002

    Wang Minyu, Luo Yi, Zhang Zhengyang, et al. Recent advances in remote sensing of vegetation phenology: Retrieval algorithm and validation strategy[J]. National Remote Sensing Bulletin, 2022, 26(3): 431−455. doi: 10.11834/j.issn.1007-4619.2022.3.ygxb202203002
    [17]
    Descals A, Verger A, Yin Gaofei, et al. Improved estimates of arctic land surface phenology using sentinel-2 time series[J]. Remote Sensing, 2020, 12(22): 3738. doi: 10.3390/rs12223738
    [18]
    Wu Nan, Shi Runhe, Zhuo Wei, et al. A classification of tidal flat wetland vegetation combining phenological features with Google earth engine[J]. Remote Sensing, 2021, 13(3): 443. doi: 10.3390/rs13030443
    [19]
    薛朝辉, 钱思羽. 融合Landsat 8与Sentinel-2数据的红树林物候信息提取与分类[J]. 遥感学报, 2022, 26(6): 1121−1142. doi: 10.11834/jrs.20221448

    Xue Zhaohui, Qian Siyu. Fusion of Landsat 8 and Sentinel-2 data for mangrove phenology information extraction and classification[J]. National Remote Sensing Bulletin, 2022, 26(6): 1121−1142. doi: 10.11834/jrs.20221448
    [20]
    Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627−1639. doi: 10.1021/ac60214a047
    [21]
    王明, 刘正佳, 陈元琰. 基于Sentinel-2波段/产品的图像云检测效果对比研究[J]. 遥感技术与应用, 2020, 35(5): 1167−1177.

    Wang Ming, Liu Zhengjia, Chen Yuanyan. Comparsions of image cloud detection effect based on Sentinel-2 bands/products[J]. Remote Sensing Technology and Application, 2020, 35(5): 1167−1177.
    [22]
    Coluzzi R, Imbrenda V, Lanfredi M, et al. A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses[J]. Remote Sensing of Environment, 2018, 217: 426−443. doi: 10.1016/j.rse.2018.08.009
    [23]
    陈君, 王义刚, 张忍顺, 等. 江苏岸外辐射沙脊群东沙稳定性研究[J]. 海洋工程, 2007, 25(1): 105−113. doi: 10.3969/j.issn.1005-9865.2007.01.017

    Chen Jun, Wang Yigang, Zhang Renshun, et al. Stability study on the Dongsha Sandbanks in submarine radial sand ridges field off Jiangsu Coast[J]. The Ocean Engineering, 2007, 25(1): 105−113. doi: 10.3969/j.issn.1005-9865.2007.01.017
    [24]
    陈玮彤, 张东, 施顺杰, 等. 江苏中部淤泥质海岸岸线变化遥感监测研究[J]. 海洋学报, 2017, 39(5): 138−148.

    Chen Weitong, Zhang Dong, Shi Shunjie, et al. Research on monitoring coastline changes by remote sensing in muddy coast, central Jiangsu coast[J]. Haiyang Xuebao, 2017, 39(5): 138−148.
    [25]
    Zhu Zhe, Woodcock C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118: 83−94. doi: 10.1016/j.rse.2011.10.028
    [26]
    Zhu Zhe, Wang Shixiong, Woodcock C E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images[J]. Remote Sensing of Environment, 2015, 159: 269−277. doi: 10.1016/j.rse.2014.12.014
    [27]
    Shi Qiu, Zhu Zhe, He Binbin. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4-8 and Sentinel-2 imagery[J]. Remote Sensing of Environment, 2019, 231: 111205. doi: 10.1016/j.rse.2019.05.024
    [28]
    Zhang Yanli, Song Yuyu, Ye Changqing, et al. An integrated approach to reconstructing snow cover under clouds and cloud shadows on Sentinel-2 Time-Series images in a mountainous area[J]. Journal of Hydrology, 2023, 619: 129264. doi: 10.1016/j.jhydrol.2023.129264
    [29]
    Sun Lin, Liu Xinyan, Yang Yikun, et al. A cloud shadow detection method combined with cloud height iteration and spectral analysis for Landsat 8 OLI data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 193−207. doi: 10.1016/j.isprsjprs.2018.02.016
    [30]
    Steinbach S, Hentschel E, Hentze K, et al. Automatization and evaluation of a remote sensing-based indicator for wetland health assessment in East Africa on national and local scales[J]. Ecological Informatics, 2023, 75: 102032. doi: 10.1016/j.ecoinf.2023.102032
    [31]
    于信芳, 庄大方. 基于MODIS NDVI数据的东北森林物候期监测[J]. 资源科学, 2006, 28(4): 111−117. doi: 10.3321/j.issn:1007-7588.2006.04.023

    Yu Xinfang, Zhuang Dafang. Monitoring forest phenophases of northeast China based on MODIS NDVI data[J]. Resources Science, 2006, 28(4): 111−117. doi: 10.3321/j.issn:1007-7588.2006.04.023
    [32]
    Jönsson P, Eklundh L. TIMESAT-a program for analyzing time-series of satellite sensor data[J]. Computers & Geosciences, 2004, 30(8): 833−845.
    [33]
    White M A, Thornton P E, Running S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability[J]. Global Biogeochemical Cycles, 1997, 11(2): 217−234. doi: 10.1029/97GB00330
    [34]
    Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62−66. doi: 10.1109/TSMC.1979.4310076
    [35]
    Xing Huaqiao, Niu Jingge, Feng Yongyu, et al. A coastal wetlands mapping approach of Yellow River Delta with a hierarchical classification and optimal feature selection framework[J]. CATENA, 2023, 223: 106897. doi: 10.1016/j.catena.2022.106897
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (187) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return