Citation: | Zou Qingchao,Shi Xuefa,Ge Shulan, et al. Magnetic recordings of millennium-scale climate events in the northern Japan Sea since the early MIS 3[J]. Haiyang Xuebao,2024, 46(4):106–121 doi: 10.12284/hyxb2024029 |
[1] |
Chen Jun, Li Gaojun, Yang Jiedong, et al. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3904−3914. doi: 10.1016/j.gca.2007.04.033
|
[2] |
Minoura K, Akaki K, Nemoto N, et al. Origin of deep water in the Japan Sea over the last 145 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 339−341: 25−38. doi: 10.1016/j.palaeo.2012.04.011
|
[3] |
Shen Xingyan, Wan Shiming, France-Lanord C, et al. History of Asian eolian input to the Sea of Japan since 15 Ma: links to Tibetan uplift or global cooling?[J]. Earth and Planetary Science Letters, 2017, 474: 296−308. doi: 10.1016/j.jpgl.2017.06.053
|
[4] |
Tada R, Irino T, Koizumi I. Land-ocean linkages over orbital and millennial timescales recorded in Late Quaternary sediments of the Japan Sea[J]. Paleoceanography, 1999, 14(2): 236−247. doi: 10.1029/1998PA900016
|
[5] |
沈兴艳, 万世明. 日本海第四纪沉积记录及其海陆联系的研究进展[J]. 海洋地质与第四纪地质, 2015, 35(6): 139−151.
Shen Xingyan, Wan Shiming. Research progress of Quaternary depositional records of the Japan Sea and its implications for the linkages to the asian continent[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 139−151.
|
[6] |
Wang Pinxian. Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features[J]. Marine Geology, 1999, 156(1/4): 5−39.
|
[7] |
Bailey I, Liu Qingsong, Swann G E A, et al. Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation[J]. Earth and Planetary Science Letters, 2011, 307(3/4): 253−265.
|
[8] |
董智, 石学法, 葛晨东, 等. 日本海中部60 ka以来的风尘沉积对西风环流演化的指示[J]. 科学通报, 2017, 62(11): 1172−1184. doi: 10.1360/N972016-00861
Dong Zhi, Shi Xuefa, Ge Chendong, et al. Evolution of westerly jet during the last 60 ka: evidence from core deposits in the central Japan (East) Sea[J]. Chinese Science Bulletin, 2017, 62(11): 1172−1184. doi: 10.1360/N972016-00861
|
[9] |
Zhang Qiang, Liu Qingsong, Li Jinhua, et al. An integrated study of the eolian dust in pelagic sediments from the North Pacific Ocean based on environmental magnetism, transmission electron microscopy, and diffuse reflectance spectroscopy[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3358−3376. doi: 10.1002/2017JB014951
|
[10] |
Itaki T, Ikehara K, Motoyama I, et al. Abrupt ventilation changes in the Japan Sea over the last 30 ky: evidence from deep-dwelling radiolarians[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208(3/4): 263−278.
|
[11] |
豆汝席, 邹建军, 石学法, 等. 3万年以来日本海西部海冰活动变化[J]. 第四纪研究, 2020, 40(3): 690−703. doi: 10.11928/j.issn.1001-7410.2020.03.08
Dou Ruxi, Zou Jianjun, Shi Xuefa, et al. Reconstructed changes in sea ice in the western Sea of Japan over the last 30000 years[J]. Quaternary Sciences, 2020, 40(3): 690−703. doi: 10.11928/j.issn.1001-7410.2020.03.08
|
[12] |
Tada R. Onset and evolution of millennial-scale variability in the Asian Monsoon and its impact on paleoceanography of the Japan Sea[M]//Clift P, Kuhnt W, Wang P, et al. Continent-Ocean Interactions Within East Asian Marginal Sea. Washington, DC: American Geophysical Union, 2004, 149: 283−298.
|
[13] |
Fujine K, Tada R, Yamamoto M. Paleotemperature response to monsoon activity in the Japan Sea during the last 160 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3/4): 350−360.
|
[14] |
Lee K E, Bahk J J, Choi J. Alkenone temperature estimates for the East Sea during the last 190, 000 years[J]. Organic Geochemistry, 2008, 39(6): 741−753. doi: 10.1016/j.orggeochem.2008.02.003
|
[15] |
Ikehara K, Fujine K. Fluctuations in the late Quaternary East Asian winter monsoon recorded in sediment records of surface water cooling in the northern Japan Sea[J]. Journal of Quaternary Science, 2012, 27(9): 866−872. doi: 10.1002/jqs.2573
|
[16] |
Zou Jianjun, Shi Xuefa, Liu Yanguang, et al. Reconstruction of environmental changes using a multi-proxy approach in the Ulleung Basin (Sea of Japan) over the last 48 ka[J]. Journal of Quaternary Science, 2012, 27(9): 891−900. doi: 10.1002/jqs.2578
|
[17] |
Tada R, Irino T, Ikehara K, et al. High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346[J]. Progress in Earth and Planetary Science, 2018, 5: 19. doi: 10.1186/s40645-018-0167-8
|
[18] |
Wu Yonghua, Shi Xuefa, Gong Xun, et al. Evolution of the upper ocean stratification in the Japan Sea since the last glacial[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088255. doi: 10.1029/2020GL088255
|
[19] |
Yamazaki T, Abdeldayem A L, Ikehara K. Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30, 000 years[J]. Earth, Planets and Space, 2003, 55(6): 327−340.
|
[20] |
Verosub K L, Roberts A P. Environmental magnetism: past, present, and future[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B2): 2175−2192. doi: 10.1029/94JB02713
|
[21] |
胡守云, 邓成龙, Appel E, 等. 湖泊沉积物磁学性质的环境意义[J]. 科学通报, 2001, 46(17): 1491−1494.
Hu Shouyun, Deng Chenglong, Appel E, et al. Environmental magnetic studies of lacustrine sediments[J]. Chinese Science Bulletin, 2002, 47(7): 1491−1494.
|
[22] |
邓成龙, 刘青松, 潘永信, 等. 中国黄土环境磁学[J]. 第四纪研究, 2007, 27(2): 193−209. doi: 10.3321/j.issn:1001-7410.2007.02.005
Deng Chenglong, Liu Qingsong, Pan Yongxin, et al. Environmental magnetism of Chinese loess-paleosol sequences[J]. Quaternary Sciences, 2007, 27(2): 193−209. doi: 10.3321/j.issn:1001-7410.2007.02.005
|
[23] |
Liu Qingsong, Roberts A P, Larrasoaña J C, et al. Environmental magnetism: principles and applications[J]. Reviews of Geophysics, 2012, 50(4): RG4002.
|
[24] |
Zheng Y, Kissel C, Zheng H B, et al. Sedimentation on the inner shelf of the East China Sea: magnetic properties, diagenesis and paleoclimate implications[J]. Marine Geology, 2010, 268(1/4): 34−42.
|
[25] |
Liu Jianxing, Liu Qingsong, Zhang Xunhua, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea[J]. Quaternary Science Reviews, 2016, 144: 1−15. doi: 10.1016/j.quascirev.2016.05.025
|
[26] |
Qin Huafeng, Zhao Xiang, Liu Shuangchi, et al. An ultra-low magnetic field thermal demagnetizer for high-precision paleomagnetism[J]. Earth, Planets and Space, 2020, 72(1): 170. doi: 10.1186/s40623-020-01304-0
|
[27] |
Bowles M W, Mogollón J M, Kasten S, et al. Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities[J]. Science, 2014, 344(6186): 889−891. doi: 10.1126/science.1249213
|
[28] |
Rickard D. How long does it take a pyrite framboid to form?[J]. Earth and Planetary Science Letters, 2019, 513: 64−68. doi: 10.1016/j.jpgl.2019.02.019
|
[29] |
Chang Liao, Roberts A P, Winklhofer M, et al. Magnetic detection and characterization of biogenic magnetic minerals: acomparison of ferromagnetic resonance and first-order reversal curve diagrams[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6136−6158. doi: 10.1002/2014JB011213
|
[30] |
Liu Jianxing, Shi Xuefa, Liu Qingsong, et al. Authigenic iron sulfides indicate sea-level change on the continental shelf: an illustration from the East China Sea[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB021222. doi: 10.1029/2020JB021222
|
[31] |
Yu Xiaoxiao, Mei Xi, Liu Jiarui, et al. Multiple sulfur isotopes of iron sulfides from thick greigite-bearing sediments indicate anaerobic oxidation and possible leakages of coastal methane[J]. Geophysical Research Letters, 2023, 50(16): e2023GL103303. doi: 10.1029/2023GL103303
|
[32] |
Tada R. Paleoceanographic evolution of the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 487−508.
|
[33] |
Oba T, Irino T. Sea level at the last glacial maximum, constrained by oxygen isotopic curves of planktonic foraminifera in the Japan Sea[J]. Journal of Quaternary Science, 2012, 27(9): 941−947. doi: 10.1002/jqs.2585
|
[34] |
邹建军, 宗娴, 朱爱美, 等. 37 ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘, 2022, 29(4): 123−135.
Zou Jianjun, Zong Xian, Zhu Aimei, et al. Stable carbon and nitrogen isotope variations in sedimentary organic matter in the Sea of Japan since 37 ka: paleoceanographic implications[J]. Earth Science Frontiers, 2022, 29(4): 123−135.
|
[35] |
Takei T, Minoura K, Tsukawaki S, et al. Intrusion of a branch of the Oyashio Current into the Japan Sea during the Holocene[J]. Paleoceanography, 2002, 17(3): 11-1−11-10.
|
[36] |
Domitsu H, Oda M. Linkages between surface and deep circulations in the southern Japan Sea during the last 27, 000 years: evidence from planktic foraminiferal assemblages and stable isotope records[J]. Marine Micropaleontology, 2006, 61(4): 155−170. doi: 10.1016/j.marmicro.2006.06.006
|
[37] |
Kido Y, Minami I, Tada R, et al. Orbital-scale stratigraphy and high-resolution analysis of biogenic components and deep-water oxygenation conditions in the Japan Sea during the last 640 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 32−49.
|
[38] |
Nagashima K, Tada R, Tani A, et al. Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2): Q02Q04.
|
[39] |
Peterson L C, Haug G H, Hughen K A, et al. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial[J]. Science, 2000, 290(5498): 1947−1951. doi: 10.1126/science.290.5498.1947
|
[40] |
Voelker A H L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database[J]. Quaternary Science Reviews, 2002, 21(10): 1185−1212. doi: 10.1016/S0277-3791(01)00139-1
|
[41] |
Sun Youbin, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46−49. doi: 10.1038/ngeo1326
|
[42] |
Xu Zhiwei, Lu Huayu, Yi Shuangwen, et al. Climate-driven changes to dune activity during the Last Glacial Maximum and deglaciation in the Mu Us dune field, north-central China[J]. Earth and Planetary Science Letters, 2015, 427: 149−159. doi: 10.1016/j.jpgl.2015.07.002
|
[43] |
Shi Zhengguo, Liu Xiaodong. Distinguishing the provenance of fine-grained eolian dust over the Chinese Loess Plateau from a modelling perspective[J]. Tellus B: Chemical and Physical Meteorology, 2011, 63(5): 959−970. doi: 10.1111/j.1600-0889.2011.00561.x
|
[44] |
Xie Yuanyun, Chi Yunping. Geochemical investigation of dry- and wet-deposited dust during the same dust-storm event in Harbin, China: constraint on provenance and implications for formation of aeolian loess[J]. Journal of Asian Earth Sciences, 2016, 120: 43−61. doi: 10.1016/j.jseaes.2016.01.025
|
[45] |
Ikehara K, Itaki T. Millennial-scale fluctuations in seasonal sea-ice and deep-water formation in the Japan Sea during the late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 131−143.
|
[46] |
Heaton T J, Köhler P, Butzin M, et al. Marine20—The marine radiocarbon age calibration curve (0−55,000 cal BP)[J]. Radiocarbon, 2020, 62(4): 779−820. doi: 10.1017/RDC.2020.68
|
[47] |
Kuzmin Y V, Burr G S, Gorbunov S V, et al. A tale of two seas: reservoir age correction values (R, ΔR) for the Sakhalin Island (Sea of Japan and Okhotsk Sea)[J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1): 460−462.
|
[48] |
Bloemendal J, King J W, Hall F R, et al. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4361−4375. doi: 10.1029/91JB03068
|
[49] |
Harrison R J, Feinberg J M. FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): Q05016.
|
[50] |
Pike C, Fernandez A. An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams[J]. Journal of Applied Physics, 1999, 85(9): 6668−6676. doi: 10.1063/1.370177
|
[51] |
Heslop D, Dekkers M J, Kruiver P P, et al. Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm[J]. Geophysical Journal International, 2002, 148(1): 58−64. doi: 10.1046/j.0956-540x.2001.01558.x
|
[52] |
Pigati J S, Quade J, Wilson J, et al. Development of low-background vacuum extraction and graphitization systems for 14C dating of old (40−60ka) samples[J]. Quaternary International, 2007, 166(1): 4−14. doi: 10.1016/j.quaint.2006.12.006
|
[53] |
刘健, 张欣, 丁璇, 等. 江苏南通近岸区晚第四纪沉积序列的沉积相特征与定年[J]. 海洋地质与第四纪地质, 2023, 43(3): 35−48.
Liu Jian, Zhang Xin, Ding Xuan, et al. Sedimentary facies characteristics and dating of the late Quaternary sedimentary sequence in the nearshore coastal area of Nantong, Jiangsu Province, China[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 35−48.
|
[54] |
Rowan C J, Roberts A P, Broadbent T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: anew view[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 223−235.
|
[55] |
常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91−99. doi: 10.3321/j.issn:0371-5736.2009.01.011
Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91−99. doi: 10.3321/j.issn:0371-5736.2009.01.011
|
[56] |
吕荐阔, 翟世奎, 于增慧, 等. 氧化还原敏感性元素在沉积环境判别中的应用研究进展[J]. 海洋科学, 2021, 45(12): 108−124.
Lü Jiankuo, Zhai Shikui, Yu Zenghui, et al. Application and influence factors of redox-sensitive elements in a sedimentary environment[J]. Marine Sciences, 2021, 45(12): 108−124.
|
[57] |
Roberts A P, Heslop D, Zhao Xiang, et al. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams[J]. Reviews of Geophysics, 2014, 52(4): 557−602. doi: 10.1002/2014RG000462
|
[58] |
秦华峰, 刘青松, 潘永信. 一阶反转曲线(FORC)图的原理及应用实例[J]. 地球物理学报, 2008, 51(3): 743−751. doi: 10.3321/j.issn:0001-5733.2008.03.015
Qin Huafeng, Liu Qingsong, Pan Yongxin. The first-order reversal curve (FORC) diagram: theory and case study[J]. ChineseJournal of Geophysics, 2008, 51(3): 743−751. doi: 10.3321/j.issn:0001-5733.2008.03.015
|
[59] |
Liu Jian, Zhu Rixiang, Roberts A P, et al. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B3): B03103.
|
[60] |
Verwey E J W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures[J]. Nature, 1939, 144(3642): 327−328.
|
[61] |
Chang Liao, Heslop D, Roberts A P, et al. Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(1): 3−14. doi: 10.1002/2015JB012485
|
[62] |
Yamazaki T, Suzuki Y, Kouduka M, et al. Dependence of bacterial magnetosome morphology on chemical conditions in deep-sea sediments[J]. Earth and Planetary Science Letters, 2019, 513: 135−143. doi: 10.1016/j.jpgl.2019.02.015
|
[63] |
Irino T, Tada R. Quantification of aeolian dust (Kosa) contribution to the Japan Sea sediments and its variation during the last 200 ky[J]. Geochemical Journal, 2000, 34(1): 59−93. doi: 10.2343/geochemj.34.59
|
[64] |
Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130, 000 years[J]. Quaternary Research, 1988, 29(2): 142−152. doi: 10.1016/0033-5894(88)90057-9
|
[65] |
Rasmussen T L, van Weering T C E, Labeyrie L. High resolution stratigraphy of the Faeroe-Shetland Channel and its relation to north Atlantic paleoceanography: The last 87 kyr[J]. Marine Geology, 1996, 131(1/2): 75−88.
|
[66] |
刘景昱, 方念乔. 海因里希事件与类海因里希事件[J]. 地球科学进展, 2019, 34(6): 618−628. doi: 10.11867/j.issn.1001-8166.2019.06.0618
Liu Jingyu, Fang Nianqiao. Heinrich events and Heinrich (-like) events[J]. Advances in Earth Science, 2019, 34(6): 618−628. doi: 10.11867/j.issn.1001-8166.2019.06.0618
|
[67] |
Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257−1266. doi: 10.1126/science.278.5341.1257
|
[68] |
Rohling E J, Mayewski P A, Challenor P. On the timing and mechanism of millennial-scale climate variability during the last glacial cycle[J]. Climate Dynamics, 2003, 20(2/3): 257−267.
|
[69] |
Stuiver M, Grootes P M. GISP2 oxygen isotope ratios[J]. Quaternary Research, 2000, 53(3): 277−284. doi: 10.1006/qres.2000.2127
|
[70] |
Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past, 2016, 12(4): 1079−1092. doi: 10.5194/cp-12-1079-2016
|
[71] |
Cheng Hai, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640−646. doi: 10.1038/nature18591
|
[72] |
Cacho I, Grimalt J O, Sierro F J, et al. Evidence for enhanced Mediterranean thermohaline circulation during rapid climatic coolings[J]. Earth and Planetary Science Letters, 2000, 183(3/4): 417−429.
|
[73] |
Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345−2348. doi: 10.1126/science.1064618
|
[74] |
Nagashima K, Tada R, Tani A, et al. Millennial-scale oscillations of the westerly jet path during the last glacial period[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1214−1220. doi: 10.1016/j.jseaes.2010.08.010
|
[75] |
Schoonen M A A, Barnes H L. Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100℃[J]. Geochimica et Cosmochimica Acta, 1991, 55(6): 1505−1514. doi: 10.1016/0016-7037(91)90123-M
|
[76] |
Roberts A P. Magnetic mineral diagenesis[J]. Earth-Science Reviews, 2015, 151: 1−47. doi: 10.1016/j.earscirev.2015.09.010
|
[77] |
Berner R A. Sedimentary pyrite formation: an update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 605−615. doi: 10.1016/0016-7037(84)90089-9
|
[78] |
Tanaka K. Formation of bottom water and its variability in the northwestern part of the Sea of Japan[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 2081−2094. doi: 10.1002/2013JC009456
|
[79] |
石学法, 邹建军, 姚政权, 等. 日本海末次冰期以来沉积作用和环境演化及其控制要素[J]. 海洋地质与第四纪地质, 2019, 39(3): 1−11.
Shi Xuefa, Zou Jianjun, Yao Zhengquan, et al. Sedimentation and environment evolution of the Sea of Japan since the Last Glaciation and its driving forces[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 1−11.
|
[80] |
刘喜停, 李安春, 马志鑫, 等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报, 2020, 38(1): 124−137.
Liu Xiting, Li Anchun, Ma Zhixin, et al. Constraint of sedimentary processes on the sulfur isotope of authigenic pyrite[J]. Acta Sedimentologica Sinica, 2020, 38(1): 124−137.
|
[81] |
Chiang J C H, Fung I Y, Wu Chihua, et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate[J]. Quaternary Science Reviews, 2015, 108: 111−129. doi: 10.1016/j.quascirev.2014.11.009
|
[82] |
Wang Yi, Hendy I L, Latimer J C, et al. Diagenesis and iron paleo-redox proxies: new perspectives from magnetic and iron speciation analyses in the Santa Barbara Basin[J]. Chemical Geology, 2019, 519: 95−109. doi: 10.1016/j.chemgeo.2019.04.018
|
[83] |
Ono Y, Naruse T. Snowline elevation and eolian dust flux in the Japanese islands during isotope stages 2 and 4[J]. Quaternary International, 1997, 37: 45−54. doi: 10.1016/1040-6182(96)00003-1
|
[84] |
Irino T, Tada R. High-resolution reconstruction of variation in aeolian dust (Kosa) deposition at ODP site 797, the Japan Sea, during the last 200 ka[J]. Global and Planetary Change, 2003, 35(1/2): 143−156.
|
[85] |
Zhang Hongbin, Griffiths M L, Chiang J C H, et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I[J]. Science, 2018, 362(6414): 580−583. doi: 10.1126/science.aat9393
|
[86] |
Kubota Y, Kimoto K, Tada R, et al. Millennial-scale variability of East Asian summer monsoon inferred from sea surface salinity in the northern East China Sea (ECS) and its impact on the Japan Sea during Marine Isotope Stage (MIS) 3[J]. Progress in Earth and Planetary Science, 2019, 6: 39. doi: 10.1186/s40645-019-0283-0
|
[87] |
Zhu Zeyang, Wu Jing, Chu Guoqiang, et al. Summer warming during Heinrich Stadial 1 in Northeast China[J]. Geology, 2024, 52(6): 385–389.
|
[88] |
Shi X F, Wu Y H, Zou J J, et al. Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (~ 88 ka)[J]. Climate of the Past, 2014, 10(5): 1735−1750. doi: 10.5194/cp-10-1735-2014
|
[89] |
Deser C, Phillips A, Bourdette V, et al. Uncertainty in climate change projections: the role of internal variability[J]. Climate Dynamics, 2012, 38(3/4): 527−546.
|
[90] |
Ueda H, Kamae Y, Hayasaki M, et al. Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon[J]. Nature Communications, 2015, 6: 8854. doi: 10.1038/ncomms9854
|