Citation: | Xu Xiaowu,Chen Yongping,Tan Ya, et al. Application of Empirical Path Model based on kernel density estimation in the construction of synthetic typhoon in Northwest Pacific Ocean[J]. Haiyang Xuebao,2024, 46(3):1–11 doi: 10.12284/hyxb2024014 |
[1] |
中华人民共和国自然资源部. 中国海洋灾害公报[R]. 北京: 中华人民共和国自然资源部, 2013−2022.
Ministry of Natural Resources of the People’s Republic of China. Bulletn of china marine disaster[R]. Beijing: Ministry of Natural Resources of the People’s Republic of China, 2013−2022.
|
[2] |
卞建云. 江苏沿海台风风暴潮数值模拟与增水极值分析[D]. 扬州: 扬州大学, 2020.
Bian Jianyun. Numerical simulation and statistical analysis of typhoon storm surge along Jiangsu Province[D]. Yangzhou: Yangzhou University, 2020.
|
[3] |
李雪, 宋冲, 巩艺杰, 等. 山东沿海台风浪数值模拟与统计分析[J]. 海洋湖沼通报, 2018(1): 27−33. doi: 10.13984/j.cnki.cn37-1141.2018.01.004
Li Xue, Song Chong, Gong Yijie, et al. Numerical simulation and statistic analysis of typhoon wave height around Shandong Coastal Area[J]. Transactions of Oceanology and Limnology, 2018(1): 27−33. doi: 10.13984/j.cnki.cn37-1141.2018.01.004
|
[4] |
李亚林. 基于Vickery风场数值模拟的台风极值风速预测[D]. 北京: 北京交通大学, 2023.
Li Yalin. Prediction of typhoon extreme wind speeds based on vickery wind field numerical simulation[D]. Beijing: Beijing Jiaotong University, 2023.
|
[5] |
Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
|
[6] |
Bi Chunwei, Zhao Yunpeng, Sun Xiongxiong, et al. An efficient artificial neural network model to predict the structural failure of high-density polyethylene offshore net cages in typhoon waves[J]. Ocean Engineering, 2020, 196: 106793. doi: 10.1016/j.oceaneng.2019.106793
|
[7] |
Bajo M, Umgiesser G. Storm surge forecast through a combination of dynamic and neural network models[J]. Ocean Modelling, 2010, 33(1/2): 1−9.
|
[8] |
French J, Mawdsley R, Fujiyama T, et al. Combining machine learning with computational hydrodynamics for prediction of tidal surge inundation at estuarine ports[J]. Procedia IUTAM, 2017, 25: 28−35. doi: 10.1016/j.piutam.2017.09.005
|
[9] |
陈希, 李妍, 沙文钰, 等. 人工神经网络技术在台风浪预报中的应用[J]. 海洋科学, 2003, 27(2): 63−67.
Chen Xi, Li Yan, Sha Wenyu, et al. Application of the neural network in ocean wave forecast of typhoon[J]. Marine Sciences, 2003, 27(2): 63−67.
|
[10] |
Reza Hashemi M, Spaulding M L, Shaw A, et al. An efficient artificial intelligence model for prediction of tropical storm surge[J]. Natural Hazards, 2016, 82(1): 471−491. doi: 10.1007/s11069-016-2193-4
|
[11] |
Russell L R. Probability distributions for texas gulf coast hurricane effects of engineering interest[D]. Stanford: Stanford University, 1969.
|
[12] |
Russell L R. Probability distributions for hurricane effects[J]. Journal of the Waterways, Harbors and Coastal Engineering Division, 1971, 97(1): 139−154. doi: 10.1061/AWHCAR.0000056
|
[13] |
ASCE. Minimum design loads for buildings and other structures: ASCE/SEI 7−10[S]. Reston: American Society of Civil Engineers, 2005.
|
[14] |
Actions S D. AS/NZS 1170.2: 2021, Structural design actions. Part 2: wind actions[S]. [S.l. : s.n.], 2002.
|
[15] |
Vickery P J, Twisdale L A. Prediction of hurricane wind speeds in the United States[J]. Journal of Structural Engineering, 1995, 121(11): 1691−1699. doi: 10.1061/(ASCE)0733-9445(1995)121:11(1691)
|
[16] |
James M K, Mason L B. Synthetic tropical cyclone database[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2005, 131(4): 181−192. doi: 10.1061/(ASCE)0733-950X(2005)131:4(181)
|
[17] |
Nederhoff K, Hoek J, Leijnse T, et al. Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations[J]. Natural Hazards and Earth System Sciences, 2021, 21(3): 861−878. doi: 10.5194/nhess-21-861-2021
|
[18] |
Leijnse T W B, Giardino A, Nederhoff K, et al. Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks[J]. Natural Hazards and Earth System Sciences, 2022, 22(6): 1863−1891. doi: 10.5194/nhess-22-1863-2022
|
[19] |
Bakker T M, Antolínez J A A, Leijnse T W B, et al. Estimating tropical cyclone-induced wind, waves, and surge: a general methodology based on representative tracks[J]. Coastal Engineering, 2022, 176: 104154. doi: 10.1016/j.coastaleng.2022.104154
|
[20] |
Hoek J. Tropical cyclone statistical wind estimation[D]. Delft: Delft University of Technology, 2017.
|
[21] |
Simiu E, Scanlan R H. Wind Effects on Structures: Fundamentals and Applications to Design[M]. 3rd ed. New York: John Wiley, 1996.
|
[22] |
Yasui H, Ohkuma T, Marukawa H, et al. Study on evaluation time in typhoon simulation based on Monte Carlo method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/15): 1529−1540.
|
[23] |
Vickery P J, Skerlj P F, Twisdale L A. Simulation of hurricane risk in the U. S. using empirical track model[J]. Journal of Structural Engineering, 2000, 126(10): 1222−1237. doi: 10.1061/(ASCE)0733-9445(2000)126:10(1222)
|
[24] |
Kaplan J, DeMaria M. A simple empirical model for predicting the decay of tropical cyclone winds after landfall[J]. Journal of Applied Meteorology, 1995, 34(11): 2499−2512. doi: 10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2
|
[25] |
Georgiou P N. Design wind speeds in tropical cyclone-prone regions[D]. London: Western University, 1986.
|
[26] |
Vickery P J, Wadhera D, Twisdale Jr L A, et al. U. S. hurricane wind speed risk and uncertainty[J]. Journal of Structural Engineering, 2009, 135(3): 301−320. doi: 10.1061/(ASCE)0733-9445(2009)135:3(301)
|