Citation: | Lei Jiaxin,Zhang Rong,Chen Yongping, et al. Numerical simulation on the impact of mangroves on wave pressure on vertical sea dikes[J]. Haiyang Xuebao,2024, 46(2):117–130 doi: 10.12284/hyxb2024011 |
[1] |
Bullock G N, Obhrai C, Peregrine D H, et al. Violent breaking wave impacts. Part 1: results from large-scale regular wave tests on vertical and sloping walls[J]. Coastal Engineering, 2007, 54(8): 602−617. doi: 10.1016/j.coastaleng.2006.12.002
|
[2] |
Romolo A, Timpano B, Laface V, et al. Experimental investigation of wave loads on U-OWC breakwater[J]. Journal of Marine Science and Engineering, 2023, 11(1): 19.
|
[3] |
叶舟. 基于浙江海堤安全的海洋环境因子变化研究[J]. 海洋工程, 2021, 39(3): 127−134.
Ye Zhou. Study on the impact of regional marine environmental factors on the seawall safety in Zhejiang[J]. The Ocean Engineering, 2021, 39(3): 127−134.
|
[4] |
陈君. 江苏海堤生态化建设思考与建议[J]. 中国水利, 2023(6): 33−36.
Chen Jun. Thoughts and suggestion on ecological construction of seawalls in Jiangsu Province[J]. China Water Resources, 2023(6): 33−36.
|
[5] |
Möller I, Kudella M, Rupprecht F, et al. Wave attenuation over coastal salt marshes under storm surge conditions[J]. Nature Geoscience, 2014, 7(10): 727−731. doi: 10.1038/ngeo2251
|
[6] |
Yang Zhiyong, Tang Jun, Shen Yongming. Numerical study for vegetation effects on coastal wave propagation by using nonlinear Boussinesq model[J]. Applied Ocean Research, 2018, 70: 32−40. doi: 10.1016/j.apor.2017.09.001
|
[7] |
Horstman E M, Dohmen-Janssen C M, Narra P M F, et al. Wave attenuation in mangroves: a quantitative approach to field observations[J]. Coastal Engineering, 2014, 94: 47−62. doi: 10.1016/j.coastaleng.2014.08.005
|
[8] |
田野, 陈玉军, 侯琳, 等. 广东湛江无瓣海桑红树林消波效应初步研究[J]. 浙江农业科学, 2014(2): 210−213.
Tian Ye, Chen Yujun, Hou Lin, et al. A preliminary study on the wave dissipation effect of mangrove forests in Zhanjiang, Guangdong Province[J]. Journal of Zhejiang Agricultural Sciences, 2014(2): 210−213.
|
[9] |
Cao Haijin, Chen Yujun, Tian Ye, et al. Field investigation into wave attenuation in the mangrove environment of the South China Sea Coast[J]. Journal of Coastal Research, 2016, 32(6): 1417−1427.
|
[10] |
Hu Zhan, Suzuki T, Zitman T, et al. Laboratory study on wave dissipation by vegetation in combined current–wave flow[J]. Coastal Engineering, 2014, 88: 131−142. doi: 10.1016/j.coastaleng.2014.02.009
|
[11] |
Maza M, Adler K, Ramos D, et al. Velocity and drag evolution from the leading edge of a model mangrove forest[J]. Journal of Geophysical Research: Oceans, 2017, 122(11): 9144−9159. doi: 10.1002/2017JC012945
|
[12] |
陈杰, 赵静, 蒋昌波, 等. 非淹没刚性植物对规则波传播变形影响实验研究[J]. 海洋通报, 2017, 36(2): 222−229.
Chen Jie, Zhao Jing, Jiang Changbo, et al. Laboratory investigation on the effects of emergent rigid vegetation on the regular wave transformation[J]. Marine Science Bulletin, 2017, 36(2): 222−229.
|
[13] |
何飞, 陈杰, 蒋昌波, 等. 规则波作用下植物带波高衰减特性实验研究[J]. 海洋科学进展, 2018, 36(1): 146−158.
He Fei, Chen Jie, Jiang Changbo, et al. Experimental study on wave height attenuation induced by the coastal vegetation under regular waves[J]. Advances in Marine Science, 2018, 36(1): 146−158.
|
[14] |
Maza M, Lara J L, Losada I J. Tsunami wave interaction with mangrove forests: a 3-D numerical approach[J]. Coastal Engineering, 2015, 98: 33−54. doi: 10.1016/j.coastaleng.2015.01.002
|
[15] |
Tang Jun, Shen Yongming, Causon D M, et al. Numerical study of periodic long wave run-up on a rigid vegetation sloping beach[J]. Coastal Engineering, 2017, 121: 158−166. doi: 10.1016/j.coastaleng.2016.12.004
|
[16] |
Yao Yu, Tang Zhengjiang, Jiang Changbo, et al. Boussinesq modeling of solitary wave run-up reduction by emergent vegetation on a sloping beach[J]. Journal of Hydro-Environment Research, 2018, 19: 78−87. doi: 10.1016/j.jher.2018.03.001
|
[17] |
Zou Xuefeng, Zhu Liangsheng, Zhao Jun. Numerical simulations of non-breaking, breaking and broken wave interaction with emerged vegetation using navier-stokes equations[J]. Water, 2019, 11(12): 2561. doi: 10.3390/w11122561
|
[18] |
Tanaka N, Sasaki Y, Mowjood M I M, et al. Coastal vegetation structures and their functions in tsunami protection: experience of the recent Indian Ocean tsunami[J]. Landscape and Ecological Engineering, 2007, 3(1): 33−45. doi: 10.1007/s11355-006-0013-9
|
[19] |
Alongi D M. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change[J]. Estuarine, Coastal and Shelf Science, 2008, 76(1): 1−13. doi: 10.1016/j.ecss.2007.08.024
|
[20] |
Schoonees T, Gijón Mancheño A, Scheres B, et al. Hard structures for coastal protection, towards greener designs[J]. Estuaries and Coasts, 2019, 42(7): 1709−1729. doi: 10.1007/s12237-019-00551-z
|
[21] |
Tomiczek T, Wargula A, Lomónaco P, et al. Physical model investigation of mid-scale mangrove effects on flow hydrodynamics and pressures and loads in the built environment[J]. Coastal Engineering, 2020, 162: 103791. doi: 10.1016/j.coastaleng.2020.103791
|
[22] |
Sainflou G. Essai sur les digues meritimes verticales[J]. Annales Pnots et Chaussees, 1928, 98(4): 5−48.
|
[23] |
Minikin R C. Winds, Waves and Maritime Structures: Studies in Harbour Making and the Protection of Coasts[M]. 2nd ed. London: Griffin, 1963.
|
[24] |
Goda Y. A new method of wave pressure calculation for the design of composite breakwaters[J]. Report of the Port and Harbour Research Institute, 1973, 12(3): 31−69.
|
[25] |
Hsu H C, Chen Y Y, Chen Y R, et al. Experimental study of forces influencing vertical breakwater under extreme waves[J]. Water, 2022, 14(4): 657. doi: 10.3390/w14040657
|
[26] |
Kumaran V, Manu, Rao S. Assessment of dynamic pressure and wave forces on vertical-caisson type breakwater[J]. Marine Georesources & Geotechnology, 2022, 40(2): 147−158.
|
[27] |
王浩霖, 张华昌, 董胜. 直立堤上任意方向入射波的波压力研究[J]. 工程力学, 2018, 35(5): 246−256.
Wang Haolin, Zhang Huachang, Dong Sheng. A study on arbitrary incident wave pressure on vertical breakwaters[J]. Engineering Mechanics, 2018, 35(5): 246−256.
|
[28] |
Neelamani S, Al-Anjari N. Experimental investigations on wave induced dynamic pressures over slotted vertical barriers in random wave fields[J]. Ocean Engineering, 2021, 220: 108482. doi: 10.1016/j.oceaneng.2020.108482
|
[29] |
Gruwez V, Altomare C, Suzuki T, et al. An inter-model comparison for wave interactions with sea dikes on shallow foreshores[J]. Journal of Marine Science and Engineering, 2020, 8(12): 985. doi: 10.3390/jmse8120985
|
[30] |
Rosenberger D, Marsooli R. Benefits of vegetation for mitigating wave impacts on vertical seawalls[J]. Ocean Engineering, 2022, 250: 110974. doi: 10.1016/j.oceaneng.2022.110974
|
[31] |
Mokrani C, Abadie S, Grilli S, et al. Numerical simulation of the impact of a plunging breaker on a vertical structure and subsequent overtopping event using a Navier-stokes VOF model[C]//Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference. Beijing: ISOPE, 2010.
|
[32] |
Martin-Medina M, Abadie S, Mokrani C, et al. Numerical simulation of flip-through impacts of variable steepness on a vertical breakwater[J]. Applied Ocean Research, 2018, 75: 117−131. doi: 10.1016/j.apor.2018.03.013
|
[33] |
Zijlema M, Stelling G, Smit P. SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters[J]. Coastal Engineering, 2011, 58(10): 992−1012. doi: 10.1016/j.coastaleng.2011.05.015
|
[34] |
Morison J R, Johnson J W, Schaaf S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5): 149−154. doi: 10.2118/950149-G
|
[35] |
Zhang Rong, Chen Yongping, Lei Jiaxin, et al. Experimental investigation of wave attenuation by mangrove forests with submerged canopies[J]. Coastal Engineering, 2023, 186: 104403. doi: 10.1016/j.coastaleng.2023.104403
|
[36] |
Zhang Xiaoxia, Lin Pengzhi, Nepf H. A simple-wave damping model for flexible marsh plants[J]. Limnology and Oceanography, 2021, 66(12): 4182−4196. doi: 10.1002/lno.11952
|
[37] |
Brinkman R M. Wave attenuation in mangrove forests: an investigation through field and theoretical studies[D]. Townsville: James Cook University, 2006.
|
[38] |
Maza M, Lara J L, Losada I J. Experimental analysis of wave attenuation and drag forces in a realistic fringe Rhizophora mangrove forest[J]. Advances in Water Resources, 2019, 131: 103376. doi: 10.1016/j.advwatres.2019.07.006
|
[39] |
Maza M, Lara J L, Losada I J. Predicting the evolution of coastal protection service with mangrove forest age[J]. Coastal Engineering, 2021, 168: 103922. doi: 10.1016/j.coastaleng.2021.103922
|
[40] |
Keimer K, Schürenkamp D, Miescke F, et al. Ecohydraulics of surrogate salt marshes for coastal protection: wave–vegetation interaction and related hydrodynamics on vegetated foreshores at sea dikes[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2021, 147(6): 04021035. doi: 10.1061/(ASCE)WW.1943-5460.0000667
|
[41] |
Phan L K, van Thiel de Vries J S M, Stive M J F. Coastal mangrove squeeze in the Mekong Delta[J]. Journal of Coastal Research, 2015, 31(2): 233−243.
|
[42] |
Ismail H, Abd Wahab A K, Alias N E. Determination of mangrove forest performance in reducing tsunami run-up using physical models[J]. Natural Hazards, 2012, 63(2): 939−963. doi: 10.1007/s11069-012-0200-y
|
[43] |
Lee W K, Tay S H X, Ooi S K, et al. Potential short wave attenuation function of disturbed mangroves[J]. Estuarine, Coastal and Shelf Science, 2021, 248: 106747. doi: 10.1016/j.ecss.2020.106747
|
[44] |
龚尚鹏, 陈杰, 蒋昌波, 等. 海岸植物带对孤立波的波能耗散研究[J]. 海洋科学进展, 2020, 38(3): 522−531.
Gong Shangpeng, Chen Jie, Jiang Changbo, et al. Solitary wave energy dissipation by coastal vegetation[J]. Advances in Marine Science, 2020, 38(3): 522−531.
|