Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 46 Issue 2
May  2024
Turn off MathJax
Article Contents
Mao Zhibang,Wang Lu,Li Junyi, et al. Multi-frequency variability and mechanism of intra-seasonal sea surface height in the Sulawesi Sea[J]. Haiyang Xuebao,2024, 46(2):14–27 doi: 10.12284/hyxb2024001
Citation: Mao Zhibang,Wang Lu,Li Junyi, et al. Multi-frequency variability and mechanism of intra-seasonal sea surface height in the Sulawesi Sea[J]. Haiyang Xuebao,2024, 46(2):14–27 doi: 10.12284/hyxb2024001

Multi-frequency variability and mechanism of intra-seasonal sea surface height in the Sulawesi Sea

doi: 10.12284/hyxb2024001
  • Received Date: 2023-09-03
  • Rev Recd Date: 2023-12-26
  • Available Online: 2024-05-22
  • Publish Date: 2024-05-29
  • Based on the satellite altimeter observation data from 1993 to 2022, this paper analyzes the temporal and spatial characteristics of the multi frequency seasonal variation signal of sea surface height in the Sulawesi sea, and gives the dynamic interpretation by using Rossby standard mode theory. The spectral analysis shows that there is a strong intra-seasonal signal of 30–90 days in the sea surface height variation of Sulawesi sea, and its average power spectral density is 13 times of the average power spectral density of the signal in half a year. These seasonal signals have discrete and discontinuous spectral peak periods, and the peaks of 54.0 d and 64.4 d are the largest, which are 28 times and 23 times of the signal of 30–90 days, respectively. The theoretical analysis shows that the existence of Rossby standard modes in the nearly closed Sulawesi deep-sea basin. The seasonal variation observed by satellite altimeter is consistent with the two-dimensional spatial structure evolution, period and westward propagation velocity of Rossby standard mode results, the superposition of Rossby standard mode solutions presents a variance distribution similar to the sea surface height variation field. This shows that the inherent oscillation of Sulawesi Sea basin is one of the important mechanisms that contribute to its intra-seasonal variation.
  • loading
  • [1]
    杜岩, 方国洪. 印度尼西亚海与印度尼西亚贯穿流研究概述[J]. 地球科学进展, 2011, 26(11): 1131−1142.

    Du Yan, Fang Guohong. Progress on the study of the Indonesian seas and Indonesian Throughflow[J]. Advances in Earth Science, 2011, 26(11): 1131−1142.
    [2]
    Broecker W S. The great ocean conveyor[J]. Oceanography, 1991, 4(2): 79−89. doi: 10.5670/oceanog.1991.07
    [3]
    王琦, 孙萍, 辛明, 等. 东印度洋冬季印尼贯穿流影响区浮游植物群落结构特征[J]. 海洋与湖沼, 2023, 54(3): 732−746. doi: 10.11693/hyhz20221000265

    Wang Qi, Sun Ping, Xin Ming, et al. Structure of phytoplankton communities in winter Indonesian Throughflow affected areas in the eastern Indian Ocean[J]. Oceanologia et Limnologia Sinica, 2023, 54(3): 732−746. doi: 10.11693/hyhz20221000265
    [4]
    Clarke A J, Liu X. Observations and dynamics of semiannual and annual sea levels near the eastern equatorial Indian Ocean boundary[J]. Journal of Physical Oceanography, 1993, 23(2): 386−399. doi: 10.1175/1520-0485(1993)023<0386:OADOSA>2.0.CO;2
    [5]
    Clarke A J, Liu X. Interannual sea level in the northern and eastern Indian Ocean[J]. Journal of Physical Oceanography, 1994, 24(6): 1224−1235. doi: 10.1175/1520-0485(1994)024<1224:ISLITN>2.0.CO;2
    [6]
    Yuan Dongliang, Wang Jing, Xu Tengfei, et al. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian Throughflow[J]. Journal of Climate, 2011, 24(14): 3593−3608. doi: 10.1175/2011JCLI3649.1
    [7]
    Tokinaga H, Xie Shangping, Timmermann A, et al. Regional patterns of tropical Indo-Pacific climate change: evidence of the Walker circulation weakening[J]. Journal of Climate, 2012, 25(5): 1689−1710. doi: 10.1175/JCLI-D-11-00263.1
    [8]
    张晶, 魏泽勋, 李淑江, 等. 太平洋−印度洋贯穿流南海分支研究综述[J]. 海洋科学进展, 2014, 32(1): 107−120. doi: 10.3969/j.issn.1671-6647.2014.01.013

    Zhang Jing, Wei Zexun, Li Shujiang, et al. Overviews on studies of the South China Sea branch of the Pacific-Indian Ocean Throughflow[J]. Advances in Marine Science, 2014, 32(1): 107−120. doi: 10.3969/j.issn.1671-6647.2014.01.013
    [9]
    徐腾飞, 周慧. 海洋再分析资料中IOD-ENSO遥相关的海洋通道机制分析[J]. 海洋学报, 2016, 38(12): 23−35.

    Xu Tengfei, Zhou Hui. Oceanic channel dynamics of the IOD-ENSO teleconnection in oceanic reanalysis datasets[J]. Haiyang Xuebao, 2016, 38(12): 23−35.
    [10]
    Wajsowicz R C. Flow of a western boundary current through multiple straits: an electrical circuit analogy for the Indonesian throughflow and archipelago[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12295−12300. doi: 10.1029/95JC02615
    [11]
    Susanto R D, Gordon A L. Velocity and transport of the Makassar Strait throughflow[J]. Journal of Geophysical Research: Oceans, 2005, 110(C1): C01005.
    [12]
    Gordon A L, Sprintall J, Van Aken H M, et al. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 115−128. doi: 10.1016/j.dynatmoce.2009.12.002
    [13]
    Susanto R D, Ffield A, Gordon A L, et al. Variability of Indonesian throughflow within Makassar Strait, 2004–2009[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09013.
    [14]
    王露, 谢玲玲, 周磊, 等. 印尼贯穿流源区马鲁古海和哈马黑拉海水团来源的气候态分析[J]. 海洋学报, 2018, 40(3): 1−15.

    Wang Lu, Xie Lingling, Zhou Lei, et al. Climatological analysis of water mass sources of Indonesia Throughflow in the Molukka Sea and Halmahera Sea[J]. Haiyang Xuebao, 2018, 40(3): 1−15.
    [15]
    S. 村内, W. J. 路德威格. 苏禄海和苏拉威西海的构造[J]. 海洋科技资料, 1975(10): 48−53.

    Murauchi S, Ludwig W J. Structure of the Sulu Sea and Sulawesi Sea[J]. Marine Science Bulletin, 1975(10): 48−53.
    [16]
    Lukas R, Firing E, Hacker P, et al. Observations of the Mindanao Current during the western equatorial Pacific Ocean circulation study[J]. Journal of Geophysical Research: Oceans, 1991, 96(C4): 7089−7104. doi: 10.1029/91JC00062
    [17]
    Miyama T, Awaji T, Akitomo K, et al. Study of seasonal transport variations in the Indonesian seas[J]. Journal of Geophysical Research: Oceans, 1995, 100(C10): 20517−20541. doi: 10.1029/95JC01667
    [18]
    Gordon A L, Susanto R D, Vranes K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960): 824−828. doi: 10.1038/nature02038
    [19]
    Gordon A L. Oceanography of the Indonesian seas and their throughflow[J]. Oceanography, 2005, 18(4): 14−27. doi: 10.5670/oceanog.2005.01
    [20]
    Wang Lu, Zhou Lei, Xie Lingling, et al. Seasonal and interannual variability of water mass sources of Indonesian Throughflow in the Maluku Sea and the Halmahera Sea[J]. Acta Oceanologica Sinica, 2019, 38(4): 58−71. doi: 10.1007/s13131-019-1413-7
    [21]
    Iskandar M R, Wardhani P W K, Suga T. Seasonal variability of the mixed layer depth in The Sulawesi Sea[J]. Oseanologi dan Limnologi di Indonesia, 2021, 6(3): 163−178. doi: 10.14203/oldi.2021.v6i3.384
    [22]
    Qiu Bo, Mao Ming, Kashino Y. Intraseasonal variability in the Indo-Pacific throughflow and the regions surrounding the Indonesian seas[J]. Journal of Physical Oceanography, 1999, 29(7): 1599−1618. doi: 10.1175/1520-0485(1999)029<1599:IVITIP>2.0.CO;2
    [23]
    Chen Xiao, Qiu Bo, Chen Shuiming, et al. Interannual modulations of the 50-day oscillations in the Celebes Sea: dynamics and impact[J]. Journal of Geophysical Research: Oceans, 2018, 123(7): 4666−4679. doi: 10.1029/2018JC013960
    [24]
    Hu Shijian, Sprintall J, Guan Cong, et al. Spatiotemporal features of intraseasonal oceanic variability in the Philippine Sea from mooring observations and numerical simulations[J]. Journal of Geophysical Research: Oceans, 2018, 123(7): 4874−4887. doi: 10.1029/2017JC013653
    [25]
    Gordon A L, Fine R A. Pathways of water between the Pacific and Indian oceans in the Indonesian seas[J]. Nature, 1996, 379(6561): 146−149. doi: 10.1038/379146a0
    [26]
    Ffield A, Gordon A L. Tidal mixing signatures in the Indonesian Seas[J]. Journal of Physical Oceanography, 1996, 26(9): 1924−1937. doi: 10.1175/1520-0485(1996)026<1924:TMSITI>2.0.CO;2
    [27]
    Arief D, Murray S P. Low-frequency fluctuations in the Indonesian Throughflow through Lombok Strait[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12455−12464. doi: 10.1029/96JC00051
    [28]
    Du Yan, Liu Kai, Zhuang Wei, et al. The Kelvin wave processes in the equatorial Indian Ocean during the 2006–2008 IOD events[J]. Atmospheric and Oceanic Science Letters, 2012, 5(4): 324−328. doi: 10.1080/16742834.2012.11447007
    [29]
    曹国娇, 魏泽勋, 徐腾飞, 等. 印度尼西亚贯穿流及其周边海域季节内变化研究综述[J]. 海洋科学, 2015, 39(10): 125−133. doi: 10.11759/hykx20141211001

    Cao Guojiao, Wei Zexun, Xu Tengfei, et al. Progress on the study of oceanic intraseasonal variability in the Indonesian throughflow and its adjacent regions[J]. Marine Sciences, 2015, 39(10): 125−133. doi: 10.11759/hykx20141211001
    [30]
    Chong J C, Sprintall J, Hautala S, et al. Shallow throughflow variability in the outflow straits of Indonesia[J]. Geophysical Research Letters, 2000, 27(1): 125−128. doi: 10.1029/1999GL002338
    [31]
    Pujiana K, Gordon A L, Sprintall J, et al. Intraseasonal variability in the Makassar Strait thermocline[J]. Journal of Marine Research, 2009, 67(6): 757−777. doi: 10.1357/002224009792006115
    [32]
    Watanabe H, Kashino Y, Yamaguchi H, et al. Moored Measurement of the Indonesian Throughflow at the Southwestern Edge of the Philippine Sea[M]. 1997.
    [33]
    袁东亮, 周慧, 王铮, 等. 印尼贯穿流源区环流的多尺度变异及其科学重要性[J]. 海洋与湖沼, 2017, 48(6): 1156−1168. doi: 10.11693/hyhz20170800217

    Yuan Dongliang, Zhou Hui, Wang Zheng, et al. The multi-scale variability of the oceancirculation at the pacific entrance of the Indonesian Throughflow and its scientific importance[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1156−1168. doi: 10.11693/hyhz20170800217
    [34]
    Pedlosky J. Geophysical Fluid Dynamics[M]. 2nd ed. New York: Springer, 1987.
    [35]
    Ahlquist J E. Climatology of normal mode Rossby waves[J]. Journal of the Atmospheric Sciences, 1985, 42(19): 2059−2068. doi: 10.1175/1520-0469(1985)042<2059:CONMRW>2.0.CO;2
    [36]
    Xie Lingling, Zheng Quanan. New insight into the South China Sea: Rossby normal modes[J]. Acta Oceanologica Sinica, 2017, 36(7): 1−3. doi: 10.1007/s13131-017-1077-0
    [37]
    Lin Zikuan, Zhang Shaoqing, Zhang Zhengguang, et al. The Rossby normal mode as a physical linkage in a machine learning forecast model for the SST and SSH of South China Sea deep basin[J]. Journal of Geophysical Research: Oceans, 2023, 128(9): e2023JC019851. doi: 10.1029/2023JC019851
    [38]
    Xie Lingling, Zheng Quanan, Zhang Shuwen, et al. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry[J]. International Journal of Remote Sensing, 2018, 39(2): 399−417. doi: 10.1080/01431161.2017.1384591
    [39]
    Iskandar I, Mardiansyah W, Masumoto Y, et al. Intraseasonal Kelvin waves along the southern coast of Sumatra and Java[J]. Journal of Geophysical Research: Oceans, 2005, 110(C4): C04013.
    [40]
    Schiller A, Wijffels S E, Sprintall J, et al. Pathways of intraseasonal variability in the Indonesian Throughflow region[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 174−200. doi: 10.1016/j.dynatmoce.2010.02.003
    [41]
    Xie Lingling, Zheng Quanan, Tian Jiwei, et al. Cruise observation of Rossby waves with finite wavelengths propagating from the Pacific to the South China Sea[J]. Journal of Physical Oceanography, 2016, 46(10): 2897−2913.
    [42]
    郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001

    Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
    [43]
    Yang Haiyuan, Wu Lixin, Sun Shantong, et al. Selective response of the South China Sea circulation to summer monsoon[J]. Journal of Physical Oceanography, 2017, 47(7): 1555−1568. doi: 10.1175/JPO-D-16-0288.1
    [44]
    Zhang Haoran, Yu Yi, Gao Zhibin, et al. Seasonal and interannual variability of fronts and their impact on chlorophyll-a in the Indonesian Seas[J]. Journal of Physical Oceanography, 2023, 53(12): 2847−2859. doi: 10.1175/JPO-D-23-0041.1
    [45]
    Hao Zhanjiu, Xu Zhenhua, Feng Ming. et al. Spatiotemporal variability of mesoscale eddies in the Indonesian Seas[J]. Remote Sensing, 2021, 13(5): 1017. doi: 10.3390/rs13051017
    [46]
    赵宇慧, 马继望, 梁湘三. 南海一个罗斯贝标准模态的特征与归因[J]. 海洋学报, 2023, 45(10): 31−41.

    Zhao Yuhui, Ma Jiwang, Liang Xiangsan. Characteristics and attributions of a Rossby normal mode in the South China Sea[J]. Haiyang Xuebao, 2023, 45(10): 31−41.
    [47]
    Li Mingting, Yuan Dongliang, Gordon A L, et al. A strong sub-thermocline intrusion of the North Equatorial Subsurface Current into the Makassar Strait in 2016–2017[J]. Geophysical Research Letters, 2021, 48(8): e2021GL092505. doi: 10.1029/2021GL092505
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (132) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return