Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
Wei Fen,Cui Mengyao,Yu Kefu, et al. Gonadal development of Acropora formosa and Favites abdita in Weizhou Island[J]. Haiyang Xuebao,2023, 45(12):92–100 doi: 10.12284/hyxb2023177
Citation: Wei Fen,Cui Mengyao,Yu Kefu, et al. Gonadal development of Acropora formosa and Favites abdita in Weizhou Island[J]. Haiyang Xuebao,2023, 45(12):92–100 doi: 10.12284/hyxb2023177

Gonadal development of Acropora formosa and Favites abdita in Weizhou Island

doi: 10.12284/hyxb2023177
  • Received Date: 2023-04-20
  • Rev Recd Date: 2023-11-01
  • Publish Date: 2023-12-01
  • Gonadal development is a crucial process for sexual reproduction in scleractinian corals, after the gonad matured, corals will spawn in suitable environments, understanding this process is essential for predicting their spawn time. However, there is no report on the gonadal development cycle and the spawning time of corals in Weizhou Island is currently unknown. From September 2021 to May 2022, our study focused on Acropora formosa and Favites abdita in Weizhou Island to observe their gonadal development process and spawning time. In the wild, the oocytes of A. formosa began to develop in September and matured after nine months, while the testes were observed in November and matured after two to three months. In F. abdita, the onset of oocytes was between in October and November, mature oocytes were observed after seven to eight months, with the development period of the testes was about one to two months. Both corals’ gametes matured in May. In tanks, both corals were observed to spawn between May 19 to 22, 2022 ( April 19 to 22, Chinese lunar calendar), which was consistent with their spawning observed in wild. Based on the results, we postulate that the spawning time of A. formosa and F. abdita in Weizhou Island is around April 15th, Chinese lunar calendar. This study provides valuable information on the reproductive biology of Weizhou Island corals.
  • loading
  • [1]
    Richmond R H. Reproduction and recruitment in corals: critical links in the persistence of reefs[M]//Birkeland C. Life and Death of Coral Reefs. New York: Chapman & Hall, 1997.
    [2]
    Szmant A M. Reproductive ecology of Caribbean reef corals[J]. Coral Reefs, 1986, 5(1): 43−53. doi: 10.1007/BF00302170
    [3]
    Baird A H, Guest J R, Willis B L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 551−571. doi: 10.1146/annurev.ecolsys.110308.120220
    [4]
    Loya Y, Sakai K. Bidirectional sex change in mushroom stony corals[J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1649): 2335−2343. doi: 10.1098/rspb.2008.0675
    [5]
    Kersting D K, Casado C, López-Legentil S, et al. Unexpected patterns in the sexual reproduction of the Mediterranean scleractinian coral Cladocora caespitosa[J]. Marine Ecology Progress Series, 2013, 486: 165−171. doi: 10.3354/meps10356
    [6]
    Goffredo S, Dubinsky Z. The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters[M]. Switzerland: Springer, 2016.
    [7]
    Harrison P L, Wallace C C. Reproduction, dispersal and recruitment of scleractinian corals[M]//Dubinsky Z. Ecosystems of the World: Coral Reefs. Amsterdam: Elsevier, 1990: 133−207.
    [8]
    Harrison P L. Sexual reproduction of scleractinian corals[M]//Dubinsky Z, Stambler N. Coral Reefs: An Ecosystem in Transition. Dordrecht: Springer, 2011: 59−85.
    [9]
    Fadlallah Y H. Sexual reproduction, development and larval biology in scleractinian corals: a review[J]. Coral Reefs, 1983, 2(3): 129−150. doi: 10.1007/BF00336720
    [10]
    Sawall Y, Al-Sofyani A. Biology of Red Sea corals: metabolism, reproduction, acclimatization, and adaptation[M]//Rasul N M A, Stewart I C F. The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin. Berlin, Heidelberg: Springer, 2015: 487−509.
    [11]
    Oliver J, Babcock R C, Harrison P L, et al. Geographic extent of mass coral spawning: clues to ultimate causal factors[C]//Proceedings of the Sixth International Coral Reef Symposium. Townsville: [s.n.], 1988: 803−810.
    [12]
    Szmant-Froelich A, Yevich P, Pilson M E Q. Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia)[J]. The Biological Bulletin, 1980, 158(2): 257−269. doi: 10.2307/1540935
    [13]
    Glynn P W, Gassman N J, Eakin C M, et al. Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador) I. Pocilloporidae[J]. Marine Biology, 1991, 109(3): 355−368. doi: 10.1007/BF01313501
    [14]
    Gilmour J P, Underwood J N, Howells E J, et al. Biannual spawning and temporal reproductive isolation in Acropora corals[J]. PLoS One, 2016, 11(3): e0150916. doi: 10.1371/journal.pone.0150916
    [15]
    Nozawa Y, Tokeshi M, Nojima S. Reproduction and recruitment of scleractinian corals in a high-latitude coral community, Amakusa, southwestern Japan[J]. Marine Biology, 2006, 149(5): 1047−1058. doi: 10.1007/s00227-006-0285-5
    [16]
    Soto D, Weil E. Sexual reproduction in the Caribbean coral genus Isophyllia (Scleractinia: Mussidae)[J]. PeerJ, 2016, 4: e2665. doi: 10.7717/peerj.2665
    [17]
    Mangubhai S, Harrison P L. Gametogenesis, spawning and fecundity of Platygyra daedalea (Scleractinia) on equatorial reefs in Kenya[J]. Coral Reefs, 2008, 27(1): 117−122. doi: 10.1007/s00338-007-0297-8
    [18]
    李元超, 黄晖, 董志军, 等. 鹿回头佳丽鹿角珊瑚卵母细胞发育的组织学研究[J]. 热带海洋学报, 2009, 28(1): 56−60. doi: 10.3969/j.issn.1009-5470.2009.01.009

    Li Yuanchao, Huang Hui, Dong Zhijun, et al. A histological analysis on oocyte development of Acropora pulchra in Sanya of Hainan Island[J]. Journal of Tropical Oceanography, 2009, 28(1): 56−60. doi: 10.3969/j.issn.1009-5470.2009.01.009
    [19]
    张诗泽, 黄晖, 张浴阳, 等. 鹿回头多孔鹿角珊瑚与丛生盔形珊瑚性腺组织学研究[J]. 生态科学, 2016, 35(1): 41−46.

    Zhang Shize, Huang Hui, Zhang Yuyang, et al. Histological analyses of the gonad for Acropora millepora and Galaxea fascicularis from Sanya Luhuitou of Hainan Island[J]. Ecological Science, 2016, 35(1): 41−46.
    [20]
    杨小东. 澄黄滨珊瑚、大管孔珊瑚和丛生盔形珊瑚性腺发育与生长规律的研究[D]. 湛江: 广东海洋大学, 2013.

    Yang Xiaodong. Study of gonad development and growths of Porites lutea, Goniopora djiboutiensis and Galaxea fascicularis[D]. Zhanjiang: Guangdong Ocean University, 2013.
    [21]
    金磊. 盾形陀螺珊瑚和稀杯盔形珊瑚性腺发育与生长规律的研究[D]. 湛江: 广东海洋大学, 2014.

    Jin Lei. Study of gonad development and growths of Turbinaria peltata and Galaxea astreata[D]. Zhanjiang: Guangdong Ocean University, 2014.
    [22]
    Chen C J, Chen W J, Chang C F. Multispecies spawning of scleractinian corals in nonreefal coral communities of northern Taiwan in the northwestern Pacific Ocean[J]. Bulletin of Marine Science, 2021, 97(2): 351−371. doi: 10.5343/bms.2020.0058
    [23]
    王文欢. 近30年来北部湾涠洲岛造礁石珊瑚群落演变及影响因素[D]. 南宁: 广西大学, 2017.

    Wang Wenhuan. Evolvement and influential factors of coral community over past three decases in Weizhou Island reef, Beibu Gulf[D]. Nanning: Guangxi University, 2017.
    [24]
    Yu Wanjun, Wang Wenhuan, Yu Kefu, et al. Rapid decline of a relatively high latitude coral assemblage at Weizhou Island, northern South China Sea[J]. Biodiversity and Conservation, 2019, 28(14): 3925−3949. doi: 10.1007/s10531-019-01858-w
    [25]
    王欣, 高霆炜, 陈骁, 等. 涠洲岛园艺式珊瑚苗圃的架设与移植[J]. 广西科学, 2017, 24(5): 462−467.

    Wang Xin, Gao Tingwei, Chen Xiao, et al. The construction and transplantation of coral gardening nursery in Weizhou Island[J]. Guangxi Sciences, 2017, 24(5): 462−467.
    [26]
    Wallace C C. Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus Acropora[J]. Marine Biology, 1985, 88(3): 217−233. doi: 10.1007/BF00392585
    [27]
    于婉君. 涠洲岛珊瑚礁区的底质特征及其对珊瑚分布的影响[D]. 南宁: 广西大学, 2022.

    Yu Wanjun. Substrate characteristics of the area of Weizhou Island reef and ITS effects on the distribution of corals[D]. Nanning: Guangxi University, 2022.
    [28]
    Kojis B L, Quinn N J. Reproductive ecology of two faviid corals (coelenterata: scleractinia)[J]. Marine Ecology Progress Series, 1982, 8(3): 251−255.
    [29]
    Maboloc E A, Jamodiong E A, Villanueva R D. Reproductive biology and larval development of the scleractinian corals Favites colemani and F. abdita (Faviidae) in northwestern Philippines[J]. Invertebrate Reproduction & Development, 2016, 60(1): 1−11.
    [30]
    Lin C H, Nozawa Y. The influence of seawater temperature on the timing of coral spawning[J]. Coral Reefs, 2023, 42(2): 417−426. doi: 10.1007/s00338-023-02349-9
    [31]
    Shikina S, Chang C F. Sexual reproduction in stony corals and insight into the evolution of oogenesis in Cnidaria[M]//Goffredo S, Dubinsky Z. The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters. Cham: Springer, 2016: 249−268.
    [32]
    Gomez E J, Jamodiong E A, Maboloc E A, et al. Gametogenesis and reproductive pattern of the reef-building coral Acropora millepora in northwestern Philippines[J]. Invertebrate Reproduction & Development, 2018, 62(4): 202−208.
    [33]
    Munasik M, Widyatmoko W. Reproduksi karang Acropora aspera di Pulau Panjang, Jawa Tengah: I. Gametogenesis[J]. Indonesian Journal of Marine Sciences, 2004, 9(4): 211−216.
    [34]
    Huang Boyin, Thorne P W, Banzon V F, et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons[J]. Journal of Climate, 2017, 30(20): 8179−8205. doi: 10.1175/JCLI-D-16-0836.1
    [35]
    Fan T Y, Dai Changfeng. Reproductive plasticity in the reef coral Echinopora lamellosa[J]. Marine Ecology Progress Series, 1999, 190: 297−301. doi: 10.3354/meps190297
    [36]
    Rossi S, Gili J M, Coma R, et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): evidence for summer–autumn feeding constraints[J]. Marine Biology, 2006, 149(3): 643−651. doi: 10.1007/s00227-005-0229-5
    [37]
    Baird A H, Guest J R, Edwards A J, et al. An Indo-Pacific coral spawning database[J]. Scientific Data, 2021, 8(1): 35. doi: 10.1038/s41597-020-00793-8
    [38]
    韦芬, 黄雯, 余克服, 等. 广西涠洲岛黄癣蜂巢珊瑚、肉质扁脑珊瑚的胚胎和幼虫的早期发育[J]. 海洋学报, 2020, 42(4): 87−95.

    Wei Fen, Huang Wen, Yu Kefu, et al. Embryonic and larval early development of Favia favus and Platygyra carnosus in the Weizhou Island, Guangxi[J]. Haiyang Xuebao, 2020, 42(4): 87−95.
    [39]
    Babcock R C, Bull G D, Harrison P L, et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef[J]. Marine Biology, 1986, 90(3): 379−394. doi: 10.1007/BF00428562
    [40]
    Shlesinger T, Loya Y. Breakdown in spawning synchrony: a silent threat to coral persistence[J]. Science, 2019, 365(6457): 1002−1007. doi: 10.1126/science.aax0110
    [41]
    Guest J R, Baird A H, Goh B P L, et al. Seasonal reproduction in equatorial reef corals[J]. Invertebrate Reproduction & Development, 2005, 48(1/3): 207−218.
    [42]
    Fogarty N D, Marhaver K L. Coral spawning, unsynchronized[J]. Science, 2019, 365(6457): 987−988. doi: 10.1126/science.aay7457
    [43]
    Keith S A, Maynard J A, Edwards A J, et al. Coral mass spawning predicted by rapid seasonal rise in ocean temperature[J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1830): 20160011. doi: 10.1098/rspb.2016.0011
    [44]
    黄洁英, 黄晖, 张浴阳, 等. 膨胀蔷薇珊瑚与壮实鹿角珊瑚的胚胎和幼虫发育[J]. 热带海洋学报, 2011, 30(2): 67−73. doi: 10.3969/j.issn.1009-5470.2011.02.010

    Huang Jieying, Huang Hui, Zhang Yuyang, et al. Embryonic and larval development of Montipora turgescens and Acropora robusta[J]. Journal of Tropical Oceanography, 2011, 30(2): 67−73. doi: 10.3969/j.issn.1009-5470.2011.02.010
    [45]
    Lin C H, Nozawa Y. Variability of spawning time (lunar day) in Acropora versus merulinid corals: a 7-yr record of in situ coral spawning in Taiwan[J]. Coral Reefs, 2017, 36(4): 1269−1278. doi: 10.1007/s00338-017-1622-5
    [46]
    Randall C J, Negri A P, Quigley K M, et al. Sexual production of corals for reef restoration in the Anthropocene[J]. Marine Ecology Progress Series, 2020, 635: 203−232. doi: 10.3354/meps13206
    [47]
    Komoto H, Lin C H, Nozawa Y, et al. An external coincidence model for the lunar cycle reveals circadian phase-dependent moonlight effects on coral spawning[J]. Journal of Biological Rhythms, 2023, 38(2): 148−158. doi: 10.1177/07487304221135916
    [48]
    Shoguchi E, Tanaka M, Shinzato C, et al. A genome-wide survey of photoreceptor and circadian genes in the coral, Acropora digitifera[J]. Gene, 2013, 515(2): 426−431. doi: 10.1016/j.gene.2012.12.038
    [49]
    Lin C H, Takahashi S, Mulla A J, et al. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(34): e2101985118.
    [50]
    Kaniewska P, Alon S, Karako-Lampert S, et al. Signaling cascades and the importance of moonlight in coral broadcast mass spawning[J]. eLife, 2015, 4: e09991. doi: 10.7554/eLife.09991
    [51]
    Shima J S, Osenberg C W, Alonzo S H, et al. How moonlight shapes environments, life histories, and ecological interactions on coral reefs[J]. Emerging Topics in Life Sciences, 2022, 6(1): 45−56. doi: 10.1042/ETLS20210237
    [52]
    Wolstenholme J, Nozawa Y, Byrne M, et al. Timing of mass spawning in corals: potential influence of the coincidence of lunar factors and associated changes in atmospheric pressure from northern and southern hemisphere case studies[J]. Invertebrate Reproduction & Development, 2018, 62(2): 98−108.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article views (189) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return