Citation: | Du Xianjun,Li He. ENSO prediction model based on integrated GCN-Transformer network[J]. Haiyang Xuebao,2023, 45(12):156–165 doi: 10.12284/hyxb2023155 |
[1] |
Luo Jinglia, Masson S, Behera S K, et al. Extended ENSO predictions using a fully coupled ocean–atmosphere model[J]. Journal of Climate, 2008, 21(1): 84−93. doi: 10.1175/2007JCLI1412.1
|
[2] |
Mu Bin, Li Jing, Yuan Shijin, et al. The NAO variability prediction and forecasting with multiple time scales driven by ENSO using machine learning approaches[J]. Computational Intelligence and Neuroscience, 2022, 2022: 6141966.
|
[3] |
Wang Gaige, Cheng Honglei, Zhang Yiming, et al. ENSO analysis and prediction using deep learning: a review[J]. Neurocomputing, 2023, 520: 216−229. doi: 10.1016/j.neucom.2022.11.078
|
[4] |
Tian Zhiqiang, Li Xiaojian, Zheng Yaoyue, et al. Graph-convolutional-network-based interactive prostate segmentation in MR images[J]. Medical Physics, 2020, 47(9): 4164−4176. doi: 10.1002/mp.14327
|
[5] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017: 6000−6010.
|
[6] |
Zhang Ronghua, Tian Feng, Wang Xiujun. A new hybrid coupled model of atmosphere, ocean physics, and ocean biogeochemistry to represent biogeophysical feedback effects in the Tropical Pacific[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(8): 1901−1923. doi: 10.1029/2017MS001250
|
[7] |
Shin J, Park S, Shin S I, et al. Enhancing ENSO prediction skill by combining model-analog and linear inverse models (MA-LIM)[J]. Geophysical Research Letters, 2020, 47(1): e2019GL085914. doi: 10.1029/2019GL085914
|
[8] |
Petersik P J, Dijkstra H A. Probabilistic forecasting of El Niño using neural network models[J]. Geophysical Research Letters, 2020, 47(6): e2019GL086423. doi: 10.1029/2019GL086423
|
[9] |
Mahesh A, Evans M, Jain G, et al. Forecasting El Niño with convolutional and recurrent neural networks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019: 8−14.
|
[10] |
林琪凡, 耿旭朴, 谢婷, 等. 基于长短期记忆神经网络的西太平洋暖池变化预测[J]. 厦门大学学报(自然科学版), 2021, 60(5): 927−936.
Lin Qifan, Geng Xupu, Xie Ting, et al. Trend prediction of Western Pacific warm pool based on long short-term memory neural networks[J]. Journal of Xiamen University (Natural Science), 2021, 60(5): 927−936.
|
[11] |
Ham Y G, Kim J H, Luo Jingjia. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568−572. doi: 10.1038/s41586-019-1559-7
|
[12] |
Gupta M, Kodamana H, Sandeep S. Prediction of ENSO beyond spring predictability barrier using deep convolutional LSTM networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1501205.
|
[13] |
Fang Wei, Sha Yu, Sheng V S. Survey on the application of artificial intelligence in ENSO forecasting[J]. Mathematics, 2022, 10(20): 22.
|
[14] |
Geng Huantong, Wang Tianlei. Spatiotemporal model based on deep learning for ENSO forecasts[J]. Atmosphere, 2021, 12(7): 810. doi: 10.3390/atmos12070810
|
[15] |
Hu Jie, Weng Bin, Huang Tianqiang, et al. Deep residual convolutional neural network combining dropout and transfer learning for ENSO forecasting[J]. Geophysical Research Letters, 2021, 48(24): e2021GL093531. doi: 10.1029/2021GL093531
|
[16] |
Ham Y G, Kim J H, Kim E S, et al. Unified deep learning model for El Niño/Southern Oscillation forecasts by incorporating seasonality in climate data[J]. Science Bulletin, 2021, 66(13): 1358−1366. doi: 10.1016/j.scib.2021.03.009
|
[17] |
Zhao Jiakun, Luo Hailun, Sang Weiguang, et al. Spatiotemporal semantic network for ENSO forecasting over long time horizon[J]. Applied Intelligence, 2023, 53(6): 6464−6480. doi: 10.1007/s10489-022-03861-1
|
[18] |
Ye Feng, Hu Jie, Huang Tianqiang, et al. Transformer for EI Niño-Southern Oscillation prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1003305.
|
[19] |
Bellenger H, Guilyardi E, Leloup J, et al. ENSO representation in climate models: from CMIP3 to CMIP5[J]. Climate Dynamics, 2014, 42(7): 1999−2018.
|
[20] |
Giese B S, Ray S. El Niño variability in simple ocean data assimilation (SODA), 1871–2008[J]. Journal of Geophysical Research: Oceans, 2011, 116(C2): C02024.
|
[21] |
Behringer D, Xue Yan. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean[C]//Proceedings of the Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface. Seattle: AMS, 2004.
|