Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Zhao Yuhui,Ma Jiwang,Liang Xiangsan. Characteristics and attributions of a Rossby normal mode in the South China Sea[J]. Haiyang Xuebao,2023, 45(10):31–41 doi: 10.12284/hyxb2023129
Citation: Zhao Yuhui,Ma Jiwang,Liang Xiangsan. Characteristics and attributions of a Rossby normal mode in the South China Sea[J]. Haiyang Xuebao,2023, 45(10):31–41 doi: 10.12284/hyxb2023129

Characteristics and attributions of a Rossby normal mode in the South China Sea

doi: 10.12284/hyxb2023129
  • Received Date: 2023-02-24
  • Rev Recd Date: 2023-05-31
  • Available Online: 2023-11-06
  • Publish Date: 2023-10-30
  • Rossby normal mode as a solution of the boundary problem is a key part of the dynamics in the South China Sea. With the usage of multiscale window transform, a recently developed decomposition tool for multiscale processes, mesoscale-eddy fields analogous to Rossby normal modes are separated from the satellite observation of the South China Sea. The eddies are dominated by a group with lifetime of 3 months, which belongs to an oscillating mode with period of 6 months and wavelength of 250 km. To explore the external influence on this mode, we apply an information flow-based causality analysis that has been rigorously established from first principles in physics. It is found that both the Kuroshio intrusion and monsoon, believed to be two primary forcings of the South China Sea circulations, are causal to the Rossby normal mode within one period. Specifically, the Kuroshio intrusion mainly affects the 1/2π and 3/2π phases, while the monsoon the 3/4π phase. Further analysis reveals that the transition between penetration and leaping of the Kuroshio at the Luzon Strait is key to the mode development. Under this circumstance, the leaking and looping branches are almost of equal intensity, facilitating the generation of cyclonic and anticyclonic eddies west of the Luzon Strait, and hence the Rossby normal mode. The monsoon over the South China Sea, on the other hand, shows the greatest influence at its mature phases. The Gulf of Thailand is a key region for the monsoon to affect the Rossby normal mode in the South China Sea, indicating that local forcing plays an important role in exciting a global mode.
  • loading
  • [1]
    Longuet-Higgins H C. Planetary waves on a rotating sphere[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1964, 279(1379): 446−473.
    [2]
    Pedlosky J. Geophysical Fluid Dynamics[M]. New York: Springer, 1987.
    [3]
    Pedlosky J, Spall M. Rossby normal modes in basins with barriers[J]. Journal of Physical Oceanography, 1999, 29(9): 2332−2349. doi: 10.1175/1520-0485(1999)029<2332:RNMIBW>2.0.CO;2
    [4]
    Pedlosky J. The destabilization of Rossby normal modes by meridional baroclinic shear[J]. Journal of Physical Oceanography, 2002, 32(8): 2418−2423. doi: 10.1175/1520-0485(2002)032<2418:TDORNM>2.0.CO;2
    [5]
    Ahlquist J E. Normal-mode global Rossby waves: theory and observations[J]. Journal of the Atmospheric Sciences, 1982, 39(2): 193−202. doi: 10.1175/1520-0469(1982)039<0193:NMGRWT>2.0.CO;2
    [6]
    Ahlquist J E. Climatology of normal mode Rossby waves[J]. Journal of the Atmospheric Sciences, 1985, 42(19): 2059−2068. doi: 10.1175/1520-0469(1985)042<2059:CONMRW>2.0.CO;2
    [7]
    Hirooka T, Hirota I. Further evidence of normal mode Rossby waves[M]//Plumb R A, Vincent R A. Middle Atmosphere. Basel: Birkhäuser, 1989: 277−289.
    [8]
    Madden R A. Large-scale, free Rossby waves in the atmosphere—an update[J]. Tellus A: Dynamic Meteorology and Oceanography, 2007, 59(5): 571−590. doi: 10.1111/j.1600-0870.2007.00257.x
    [9]
    Sassi F, Garcia R R, Hoppel K W. Large-scale Rossby normal modes during some recent northern Hemisphere winters[J]. Journal of the Atmospheric Sciences, 2012, 69(3): 820−839. doi: 10.1175/JAS-D-11-0103.1
    [10]
    Weijer W, Vivier F, Gille S T, et al. Multiple oscillatory modes of the Argentine basin. Part I: statistical analysis[J]. Journal of Physical Oceanography, 2007, 37(12): 2855−2868. doi: 10.1175/2007JPO3527.1
    [11]
    Weijer W, Vivier F, Gille S T, et al. Multiple oscillatory modes of the Argentine basin. Part II: the spectral origin of basin modes[J]. Journal of Physical Oceanography, 2007, 37(12): 2869−2881. doi: 10.1175/2007JPO3688.1
    [12]
    Mensah V, Ohshima K I. Variabilities of the sea surface height in the Kuril Basin of the Sea of Okhotsk: coherent shelf-trapped mode and Rossby normal modes[J]. Journal of Physical Oceanography, 2020, 50(8): 2289−2313. doi: 10.1175/JPO-D-19-0216.1
    [13]
    Xie Lingling, Zheng Quanan. New insight into the South China Sea: Rossby normal modes[J]. Acta Oceanologica Sinica, 2017, 36(7): 1−3. doi: 10.1007/s13131-017-1077-0
    [14]
    Xie Lingling, Zheng Quanan, Zhang Shuwen, et al. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry[J]. International Journal of Remote Sensing, 2018, 39(2): 399−417. doi: 10.1080/01431161.2017.1384591
    [15]
    郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001

    Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
    [16]
    Zhang Meng, von Storch H, Chen Xueen, et al. Temporal and spatial statistics of travelling eddy variability in the South China Sea[J]. Ocean Dynamics, 2019, 69(8): 879−898. doi: 10.1007/s10236-019-01282-2
    [17]
    Huang Runqi, Xie Linging, Zheng Quanan, et al. Statistical analysis of mesoscale eddy propagation velocity in the South China Sea deep basin[J]. Acta Oceanologica Sinica, 2020, 39(11): 91−102. doi: 10.1007/s13131-020-1678-x
    [18]
    Fang Guohong, Wang Gang, Fang Yue, et al. A review on the South China Sea western boundary current[J]. Acta Oceanologica Sinica, 2012, 31(5): 1−10. doi: 10.1007/s13131-012-0231-y
    [19]
    Zhang Jinchao, Zhang Zhiwei, Qiu Bo, et al. Seasonal modulation of submesoscale kinetic energy in the upper ocean of the northeastern South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(11): e2021JC017695. doi: 10.1029/2021JC017695
    [20]
    Liang X S, Anderson D G M. Multiscale window transform[J]. Multiscale Modeling & Simulation, 2007, 6(2): 437−467. doi: 10.1137/06066895X
    [21]
    Liang X S. Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres[J]. Journal of the Atmospheric Sciences, 2016, 73(11): 4439−4468. doi: 10.1175/JAS-D-16-0131.1
    [22]
    Granger C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3): 424−438. doi: 10.2307/1912791
    [23]
    Pearl J. Causality: Models, Reasoning, and Inference[M]. 2nd ed. New York: Cambridge University Press, 2009.
    [24]
    Liang X S. Unraveling the cause-effect relation between time series[J]. Physical Review E, 2014, 90(5): 052150. doi: 10.1103/PhysRevE.90.052150
    [25]
    Liang X S. Information flow and causality as rigorous notions ab initio[J]. Physical Review E, 2016, 94(5): 052201. doi: 10.1103/PhysRevE.94.052201
    [26]
    Liang X S. Normalized multivariate time series causality analysis and causal graph reconstruction[J]. Entropy, 2021, 23(6): 679. doi: 10.3390/e23060679
    [27]
    Hu Jianyu, Kawamura H, Hong Huasheng, et al. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion[J]. Journal of Oceanography, 2000, 56(6): 607−624. doi: 10.1023/a:1011117531252
    [28]
    Gan Jianping, Li H, Curchitser E N, et al. Modeling South China Sea circulation: response to seasonal forcing regimes[J]. Journal of Geophysical Research: Oceans, 2006, 111(C6): C06034. doi: 10.1029/2005JC003298
    [29]
    Qu Tangdong. Upper-layer circulation in the South China Sea[J]. Journal of Physical Oceanography, 2000, 30(6): 1450−1460. doi: 10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2
    [30]
    Xue Huijie, Chai Fei, Pettigrew N, et al. Kuroshio intrusion and the circulation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2): C02017. doi: 10.1029/2002JC001724
    [31]
    Yang Haijun, Liu Qinyu, Liu Zhengyu, et al. A general circulation model study of the dynamics of the upper ocean circulation of the South China Sea[J]. Journal of Geophysical Research: Oceans, 2002, 107(C7): 3085. doi: 10.1029/2001JC001084
    [32]
    Yuan Dongliang. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport[J]. Acta Oceanologica Sinica, 2002, 21(2): 187−202.
    [33]
    Tian Jiwei, Yang Qingxuan, Liang Xinfeng, et al. Observation of Luzon Strait transport[J]. Geophysical Research Letters, 2006, 33(19): L19607. doi: 10.1029/2006GL026272
    [34]
    Yang Qingxuan, Tian Jiwei, Zhao Wei. Observation of Luzon Strait transport in summer 2007[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57(5): 670−676. doi: 10.1016/j.dsr.2010.02.004
    [35]
    Zhang Zhengguang, Zhao Wei, Liu Qinyu. Sub-seasonal variability of Luzon Strait transport in a high resolution global model[J]. Acta Oceanologica Sinica, 2010, 29(3): 9−17. doi: 10.1007/s13131-010-0032-0
    [36]
    Rong Yineng, Liang X S. Panel data causal inference using a rigorous information flow analysis for homogeneous, independent and identically distributed datasets[J]. IEEE Access, 2021, 9: 47266−47274. doi: 10.1109/ACCESS.2021.3068273
    [37]
    Nan Feng, Xue Huijie, Chai Fei, et al. Identification of different types of Kuroshio intrusion into the South China Sea[J]. Ocean Dynamics, 2011, 61(9): 1291−1304. doi: 10.1007/s10236-011-0426-3
    [38]
    Liu Qinyu, Yang Haijun, Liu Zhengyu. Seasonal features of the Sverdrup circulation in the South China Sea[J]. Progress in Natural Science, 2001, 11(3): 203−206.
    [39]
    Yang Haiyuan, Wu Lixin, Sun Shantong, et al. Low-frequency variability of monsoon-driven circulation with application to the South China Sea[J]. Journal of Physical Oceanography, 2015, 45(6): 1632−1650. doi: 10.1175/JPO-D-14-0212.1
    [40]
    Yuan Dongliang, Han Weiqing, Hu Dunxin. Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters[J]. Geophysical Research Letters, 2007, 34(13): L13610. doi: 10.1029/2007GL029401
    [41]
    Wang Guihua, Chen Dake, Su Jilan. Winter eddy genesis in the eastern South China Sea due to orographic wind jets[J]. Journal of Physical Oceanography, 2008, 38(3): 726−732. doi: 10.1175/2007JPO3868.1
    [42]
    Chu P C, Chen Yuchun, Lu Shihua. Wind-driven South China Sea deep basin warm-core/cool-core eddies[J]. Journal of Oceanography, 1998, 54(4): 347−360. doi: 10.1007/BF02742619
    [43]
    Wang Bin, Huang Fei, Wu Zhiwei, et al. Multi-scale climate variability of the South China Sea monsoon: a review[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 15−37. doi: 10.1016/j.dynatmoce.2008.09.004
    [44]
    Xie Shangping, Chang C H, Xie Qiang, et al. Intraseasonal variability in the summer South China Sea: wind jet, cold filament, and recirculations[J]. Journal of Geophysical Research: Oceans, 2007, 112(C10): C10008. doi: 10.1029/2007JC004238
    [45]
    Wang Guihua, Wang Chunzai, Huang Ruixin. Interdecadal variability of the eastward current in the South China Sea associated with the summer Asian monsoon[J]. Journal of Climate, 2010, 23(22): 6115−6123. doi: 10.1175/2010JCLI3607.1
    [46]
    Ngo M H, Hsin Y C. Impacts of wind and current on the interannual variation of the summertime upwelling off southern Vietnam in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(6): e2020JC016892. doi: 10.1029/2020JC016892
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (265) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return