Citation: | Zhang Haorui,Zhou Lei. The distribution of eastward propagating pathways of the Tropical Intraseasonal Oscillation and its mechanism in the Maritime Continent[J]. Haiyang Xuebao,2023, 45(10):13–30 doi: 10.12284/hyxb2023125 |
[1] |
Madden R A, Julian P R. Description of global-scale circulation cells in the tropics with a 40−50 day period[J]. Journal of the Atmospheric Sciences, 1972, 29(6): 1109−1123. doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
|
[2] |
Zhang Chidong. Madden-julian oscillation[J]. Reviews of Geophysics, 2005, 43(2): RG2003.
|
[3] |
Kerns B W, Chen S S. A 20-year climatology of madden-julian oscillation convection: large-scale precipitation tracking from TRMM-GPM rainfall[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(7): e2019JD032142. doi: 10.1029/2019JD032142
|
[4] |
Zhou Lei, Murtugudde R. Oceanic impacts on MJOs detouring near the maritime continent[J]. Journal of Climate, 2020, 33(6): 2371−2388. doi: 10.1175/JCLI-D-19-0505.1
|
[5] |
Wilson E A, Gordon A L, Kim D. Observations of the madden Julian oscillation during Indian Ocean dipole events[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(6): 2588−2599. doi: 10.1002/jgrd.50241
|
[6] |
Lau K M, Chan P H. Aspects of the 40−50 day oscillation during the northern summer as inferred from outgoing longwave radiation[J]. Monthly Weather Review, 1986, 114(7): 1354−1367. doi: 10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2
|
[7] |
Knutson T R, Weickmann K M. 30−60 day atmospheric oscillations: composite life cycles of convection and circulation anomalies[J]. Monthly Weather Review, 1987, 115(7): 1407−1436. doi: 10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2
|
[8] |
Zhang Chidong, Hendon H H. Propagating and standing components of the Intraseasonal Oscillation in tropical convection[J]. Journal of the Atmospheric Sciences, 1997, 54(6): 741−752. doi: 10.1175/1520-0469(1997)054<0741:PASCOT>2.0.CO;2
|
[9] |
Maloney E D, Hartmann D L. Frictional moisture convergence in a composite life cycle of the Madden-Julian Oscillation[J]. Journal of Climate, 1998, 11(9): 2387−2403. doi: 10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2
|
[10] |
Lo F, Hendon H H. Empirical extended-range prediction of the Madden-Julian Oscillation[J]. Monthly Weather Review, 2000, 128(7): 2528−2543. doi: 10.1175/1520-0493(2000)128<2528:EERPOT>2.0.CO;2
|
[11] |
Matthews A J. Propagation mechanisms for the Madden-Julian Oscillation[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(569): 2637−2651.
|
[12] |
Kessler W S. EOF representations of the Madden-Julian Oscillation and its connection with ENSO[J]. Journal of Climate, 2001, 14(13): 3055−3061. doi: 10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2
|
[13] |
Adames Á F, Wallace J M. Three-dimensional structure and evolution of the MJO and its relation to the mean flow[J]. Journal of the Atmospheric Sciences, 2014, 71(6): 2007−2026. doi: 10.1175/JAS-D-13-0254.1
|
[14] |
Straub K H. MJO initiation in the real-time multivariate MJO index[J]. Journal of Climate, 2013, 26(4): 1130−1151. doi: 10.1175/JCLI-D-12-00074.1
|
[15] |
Kiladis G N, Dias J, Straub K H, et al. A comparison of OLR and circulation-based indices for tracking the MJO[J]. Monthly Weather Review, 2014, 142(5): 1697−1715. doi: 10.1175/MWR-D-13-00301.1
|
[16] |
Inness P M, Slingo J M. The interaction of the Madden-Julian Oscillation with the Maritime Continent in a GCM[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(618): 1645−1667. doi: 10.1256/qj.05.102
|
[17] |
Kerns B W, Chen S S. Large-scale precipitation tracking and the MJO over the Maritime Continent and Indo-Pacific warm pool[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(15): 8755−8776. doi: 10.1002/2015JD024661
|
[18] |
Kim D, Kim H, Lee M I. Why does the MJO detour the Maritime Continent during austral summer?[J]. Geophysical Research Letters, 2017, 44(5): 2579−2587. doi: 10.1002/2017GL072643
|
[19] |
Zhang Chidong, Ling Jian. Barrier effect of the indo-pacific maritime continent on the MJO: perspectives from tracking MJO precipitation[J]. Journal of Climate, 2017, 30(9): 3439−3459. doi: 10.1175/JCLI-D-16-0614.1
|
[20] |
Weaver S J, Wang Wanqiu, Chen Mingyue, et al. Representation of MJO variability in the NCEP climate forecast system[J]. Journal of Climate, 2011, 24(17): 4676−4694. doi: 10.1175/2011JCLI4188.1
|
[21] |
Wang Wanqiu, Hung Mengpai, Weaver S J, et al. MJO prediction in the NCEP climate forecast system version 2[J]. Climate Dynamics, 2014, 42(9/10): 2509−2520.
|
[22] |
Kim H M, Kim D, Vitart F, et al. MJO propagation across the maritime continent in the ECMWF ensemble prediction system[J]. Journal of Climate, 2016, 29(11): 3973−3988. doi: 10.1175/JCLI-D-15-0862.1
|
[23] |
Wu C H, Hsu H H. Topographic influence on the MJO in the maritime continent[J]. Journal of Climate, 2009, 22(20): 5433−5448. doi: 10.1175/2009JCLI2825.1
|
[24] |
Tan Haochen, Ray P, Barrett B S, et al. Role of topography on the MJO in the maritime continent: a numerical case study[J]. Climate Dynamics, 2020, 55(1/2): 295−314.
|
[25] |
Sobel A H, Maloney E D, Bellon G, et al. Surface fluxes and tropical intraseasonal variability: a reassessment[J]. Journal of Advances in Modeling Earth Systems, 2010, 2(1): 1−27.
|
[26] |
Krishnamurti T N, Oosterhof D K, Mehta A V. Air-sea interaction on the time scale of 30 to 50 days[J]. Journal of the Atmospheric Sciences, 1988, 45(8): 1304−1322. doi: 10.1175/1520-0469(1988)045<1304:AIOTTS>2.0.CO;2
|
[27] |
Tseng W L, Hsu H H, Keenlyside N, et al. Effects of surface orography and land-sea contrast on the Madden-Julian Oscillation in the maritime continent: a numerical study using ECHAM5-SIT[J]. Journal of Climate, 2017, 30(23): 9725−9741. doi: 10.1175/JCLI-D-17-0051.1
|
[28] |
Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8(1): 38−55. doi: 10.1175/JHM560.1
|
[29] |
Reynolds R W, Smith T M, Liu Chunying, et al. Daily high-resolution-blended analyses for sea surface temperature[J]. Journal of Climate, 2007, 20(22): 5473−5496. doi: 10.1175/2007JCLI1824.1
|
[30] |
Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
|
[31] |
Lau K M, Chan P H. Aspects of the 40−50 day oscillation during the northern winter as inferred from outgoing longwave radiation[J]. Monthly Weather Review, 1985, 113(11): 1889−1909. doi: 10.1175/1520-0493(1985)113<1889:AOTDOD>2.0.CO;2
|
[32] |
Rui Hualan, Wang Bin. Development characteristics and dynamic structure of tropical intraseasonal convection anomalies[J]. Journal of the Atmospheric Sciences, 1990, 47(3): 357−379. doi: 10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2
|
[33] |
Trenberth K E. The definition of El Niño[J]. Bulletin of the American Meteorological Society, 1997, 78(12): 2771−2778. doi: 10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
|
[34] |
Zhou Lei, Ruan Ruomei, Murtugudde R. Impacts of detoured Madden-Julian Oscillations on the South Pacific convergence zone[J]. Journal of Climate, 2021, 34(13): 5461−5476.
|
[35] |
Arakawa A, Schubert W H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I[J]. Journal of the Atmospheric Sciences, 1974, 31(3): 674−701. doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
|
[36] |
Emanuel K A, Neelin J D, Bretherton C S. On large-scale circulations in convecting atmospheres[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(519): 1111−1143.
|
[37] |
Arakawa A. The cumulus parameterization problem: past, present, and future[J]. Journal of Climate, 2004, 17(13): 2493−2525. doi: 10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2
|
[38] |
Shinoda T, Hendon H H, Glick J. Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans[J]. Journal of Climate, 1998, 11(7): 1685−1702. doi: 10.1175/1520-0442(1998)011<1685:IVOSFA>2.0.CO;2
|
[39] |
Araligidad N M, Maloney E D. Wind-driven latent heat flux and the Intraseasonal Oscillation[J]. Geophysical Research Letters, 2008, 35(4): L04815.
|
[40] |
Sobel A H, Maloney E D, Bellon G, et al. The role of surface heat fluxes in tropical Intraseasonal Oscillations[J]. Nature Geoscience, 2008, 1(10): 653−657. doi: 10.1038/ngeo312
|
[41] |
Fink A, Speth P. Some potential forcing mechanisms of the year-to-year variability of the tropical convection and its intraseasonal (25-70-day) variability[J]. International Journal of Climatology, 1997, 17(14): 1513−1534. doi: 10.1002/(SICI)1097-0088(19971130)17:14<1513::AID-JOC210>3.0.CO;2-U
|
[42] |
Zhang Chidong, Hendon H H, Kessler W S, et al. A workshop on the MJO and ENSO[J]. Bulletin of the American Meteorological Society, 2001, 82(5): 971−976. doi: 10.1175/1520-0477(2001)082<0971:MSAWOT>2.3.CO;2
|