Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Yang Meiqing,Feng Zhixuan,Song Hongjun. Analyze simulation errors of phytoplankton blooms in typical Arctic seas based on CMIP6 models[J]. Haiyang Xuebao,2023, 45(7):40–55 doi: 10.12284/hyxb2023115
Citation: Yang Meiqing,Feng Zhixuan,Song Hongjun. Analyze simulation errors of phytoplankton blooms in typical Arctic seas based on CMIP6 models[J]. Haiyang Xuebao,2023, 45(7):40–55 doi: 10.12284/hyxb2023115

Analyze simulation errors of phytoplankton blooms in typical Arctic seas based on CMIP6 models

doi: 10.12284/hyxb2023115
  • Received Date: 2022-11-07
  • Rev Recd Date: 2023-02-27
  • Available Online: 2023-08-08
  • Publish Date: 2023-07-01
  • Phytoplankton blooms in polar regions with seasonal sea ice cover show a unimodal seasonality. However, the bloom processes are controlled by multiple physical and biogeochemical factors, including sea ice, light availability, mixed layer depth, and nutrients; those may result in great uncertainties in simulating phytoplankton bloom by the Earth System Models (ESMs). In this study, the results of 11 Coupled Model Intercomparison Phase-6 (CMIP6) ESMs were analyzed and evaluated with various types of observational products in order to determine whether those ESMs can correctly model the phytoplankton blooms in three Arctic shelf seas, Barents Sea, Chukchi Sea, and Bering Sea. By calculating multiple indices that represent light and nutrient limitations, the error sources of simulated surface chlorophyll a concentrations were comprehensively analyzed. Our results show that the 11 ESMs can be divided into three groups based on ice-adjusted photoperiod, rate of change of mixed layer depth, and surface nitrate concentration. Some groups are characterized by the smallest bias between modeled indices and observation-based reference, and those ESMs perform best in simulating phytoplankton bloom characteristics. The other groups of ESMs differ significantly from the reference values in terms of surface nitrate and/or rate of change of mixed layer depth, resulting in delayed occurrences of annual chlorophyll a peak concentration and greater differences in corresponding peak values. In general, in addition to the two primary constraints of light and nutrients, the ESMs should also well represent the upper mixed layer controlled by temperature and salinity distributions, so as to accurately simulate the seasonal variation of surface chlorophyll a concentration. The above analyses indicate ESMs can be used in assessing polar planktonic ecosystems, and there is room for improving ecosystem-related parametrization in future ESM development.
  • loading
  • [1]
    朱大勇, 赵进平, 史久新. 北极楚科奇海海冰面积多年变化的研究[J]. 海洋学报, 2007, 29(2): 25−33.

    Zhu Dayong, Zhao Jinping, Shi Jiuxin. Study on the multi-year variations of sea ice cover of Chukchi Sea in Arctic Ocean[J]. Haiyang Xuebao, 2007, 29(2): 25−33.
    [2]
    Hunt Jr G L, Blanchard A L, Boveng P, et al. The Barents and Chukchi Seas: comparison of two Arctic shelf ecosystems[J]. Journal of Marine Systems, 2013, 109−110: 43−68. doi: 10.1016/j.jmarsys.2012.08.003
    [3]
    Årthun M, Eldevik T, Smedsrud L H, et al. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat[J]. Journal of Climate, 2012, 25(13): 4736−4743. doi: 10.1175/JCLI-D-11-00466.1
    [4]
    李正, 沙龙滨, 刘焱光, 等. 末次盛冰期以来巴伦支海−喀拉海古海洋环境及海冰研究进展[J]. 海洋通报, 2021, 40(3): 241−253.

    Li Zheng, Sha Longbin, Liu Yanguang, et al. Research progress in the paleoceanography environment and sea ice around Barents-Kara Sea since the Last Glacial Maximum[J]. Marine Science Bulletin, 2021, 40(3): 241−253.
    [5]
    Sorteberg A, Kvingedal B. Atmospheric forcing on the Barents Sea winter ice extent[J]. Journal of Climate, 2006, 19(19): 4772−4784. doi: 10.1175/JCLI3885.1
    [6]
    Carmack E C, Macdonald R W, Perkin R G, et al. Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: results from the Larsen-93 expedition[J]. Geophysical Research Letters, 1995, 22(9): 1061−1064. doi: 10.1029/95GL00808
    [7]
    McLaughlin F A, Carmack E C, Macdonald R W, et al. Physical and geochemical properties across the Atlantic/Pacific water mass front in the southern Canadian Basin[J]. Journal of Geophysical Research: Oceans, 1996, 101(C1): 1183−1197. doi: 10.1029/95JC02634
    [8]
    Coachman L K, Tripp R B. Currents north of Bering Strait in winter[J]. Limnology and Oceanography, 1970, 15(4): 625−632. doi: 10.4319/lo.1970.15.4.0625
    [9]
    艾松涛, 陈一凡, 桂大伟, 等. 中国历次极地考察航线及破冰船航行特征分析(1984−2019)[J]. 测绘地理信息, 2021, 46(3): 1−9.

    Ai Songtao, Chen Yifan, Gui Dawei, et al. Characteristics analysis on polar voyage routes and navigation of Chinese icebreakers (1984−2019)[J]. Journal of Geomatics, 2021, 46(3): 1−9.
    [10]
    王锚婷, 王朝晖, 雷明丹, 等. 冰藻在北冰洋生态系统中的重要性及其对全球变暖的响应[J]. 海洋环境科学, 2021, 40(4): 550−554.

    Wang Maoting, Wang Zhaohui, Lei Mingdan, et al. The importance of ice algae in the Arctic Ocean ecosystem and their responses to the global warming[J]. Marine Environmental Science, 2021, 40(4): 550−554.
    [11]
    Song Hongjun, Ji Rubao, Jin Meibing, et al. Strong and regionally distinct links between ice-retreat timing and phytoplankton production in the Arctic Ocean[J]. Limnology and Oceanography, 2021, 66(6): 2498−2508. doi: 10.1002/lno.11768
    [12]
    周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445−456.

    Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the coupled model intercomparison project phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445−456.
    [13]
    Sellar A A, Jones C G, Mulcahy J P, et al. UKESM1: description and evaluation of the U. K. Earth System Model[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4513−4558. doi: 10.1029/2019MS001739
    [14]
    Adcroft A, Anderson W, Balaji V, et al. The GFDL global ocean and sea ice model OM4.0: model description and simulation features[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(10): 3167−3211. doi: 10.1029/2019MS001726
    [15]
    Swart N C, Cole J N S, Kharin V V, et al. The Canadian earth system model version 5 (CanESM5.0. 3)[J]. Geoscientific Model Development, 2019, 12(11): 4823−4873. doi: 10.5194/gmd-12-4823-2019
    [16]
    Mulcahy J P, Johnson C, Jones C G, et al. Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations[J]. Geoscientific Model Development, 2020, 13(12): 6383−6423. doi: 10.5194/gmd-13-6383-2020
    [17]
    Liu Yaman, Dong Xinyi, Wang Minghuai, et al. Analysis of secondary organic aerosol simulation bias in the Community Earth System Model (CESM2.1)[J]. Atmospheric Chemistry and Physics, 2021, 21(10): 8003−8021. doi: 10.5194/acp-21-8003-2021
    [18]
    Hague M, Vichi M. A link between CMIP5 phytoplankton phenology and sea ice in the Atlantic Southern Ocean[J]. Geophysical Research Letters, 2018, 45(13): 6566−6575. doi: 10.1029/2018GL078061
    [19]
    Names and Limits of Oceans and Seas[M]. Monaco: International Hydrographic Bureau, 2002.
    [20]
    Polyakov I V, Bhatt U S, Walsh J E, et al. Recent oceanic changes in the Arctic in the context of long-term observations[J]. Ecological Applications, 2013, 23(8): 1745−1764. doi: 10.1890/11-0902.1
    [21]
    Ziehn T, Chamberlain M A, Law R M, et al. The Australian earth system model: ACCESS-ESM1.5[J]. Journal of Southern Hemisphere Earth Systems Science, 2020, 70(1): 193−214. doi: 10.1071/ES19035
    [22]
    Danabasoglu G, Lamarque J F, Bacmeister J, et al. The community earth system model version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(2): e2019MS001916.
    [23]
    Lovato T, Peano D, Butenschön M, et al. CMIP6 simulations with the CMCC earth system model (CMCC-ESM2)[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(3): e2021MS002814. doi: 10.1029/2021MS002814
    [24]
    Séférian R, Nabat P, Michou M, et al. Evaluation of CNRM earth system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4182−4227. doi: 10.1029/2019MS001791
    [25]
    Sospedra-Alfonso R, Merryfield W J, Boer G J, et al. Decadal climate predictions with the Canadian Earth system model version 5 (CanESM5)[J]. Geoscientific Model Development, 2021, 14(11): 6863−6891. doi: 10.5194/gmd-14-6863-2021
    [26]
    Dunne J P, Horowitz L W, Adcroft A J, et al. The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(11): e2019MS002015.
    [27]
    Boucher O, Servonnat J, Albright A L, et al. Presentation and evaluation of the IPSL-CM6A-LR climate model[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(7): e2019MS002010.
    [28]
    Hajima T, Watanabe M, Yamamoto A, et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks[J]. Geoscientific Model Development, 2020, 13(5): 2197−2244. doi: 10.5194/gmd-13-2197-2020
    [29]
    Müller W A, Jungclaus J H, Mauritsen T, et al. A higher-resolution version of the max planck institute earth system model (MPI-ESM1.2-HR)[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(7): 1383−1413. doi: 10.1029/2017MS001217
    [30]
    Forster P M, Maycock A C, McKenna C M, et al. Latest climate models confirm need for urgent mitigation[J]. Nature Climate Change, 2020, 10(1): 7−10. doi: 10.1038/s41558-019-0660-0
    [31]
    Comiso J C, Meier W N, Gersten R. Variability and trends in the Arctic Sea ice cover: results from different techniques[J]. Journal of Geophysical Research: Oceans, 2017, 122(8): 6883−6900. doi: 10.1002/2017JC012768
    [32]
    Maritorena S, Siegel D A. Consistent merging of satellite ocean color data sets using a bio-optical model[J]. Remote Sensing of Environment, 2005, 94(4): 429−440. doi: 10.1016/j.rse.2004.08.014
    [33]
    Deser C, Walsh J E, Timlin M S. Arctic sea ice variability in the context of recent atmospheric circulation trends[J]. Journal of Climate, 2000, 13(3): 617−633. doi: 10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2
    [34]
    Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7): 7183−7192. doi: 10.1029/2000JD900719
    [35]
    Li Yun, Ji Rubao, Jenouvrier S, et al. Synchronicity between ice retreat and phytoplankton bloom in circum-Antarctic polynyas[J]. Geophysical Research Letters, 2016, 43(5): 2086−2093. doi: 10.1002/2016GL067937
    [36]
    Forsythe W C, Rykiel Jr E J, Stahl R S, et al. A model comparison for daylength as a function of latitude and day of year[J]. Ecological Modelling, 1995, 80(1): 87−95. doi: 10.1016/0304-3800(94)00034-F
    [37]
    Peralta-Ferriz C, Woodgate R A. Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling[J]. Progress in Oceanography, 2015, 134: 19−53. doi: 10.1016/j.pocean.2014.12.005
    [38]
    庞小平, 胡晓坤, 季青, 等. 北冰洋叶绿素a及初级生产力遥感反演研究进展[J]. 极地研究, 2022, 34(1): 1−10.

    Pang Xiaoping, Hu Xiaokun, Ji Qing, et al. Research progress on remote sensing retrieval of chlorophyll a and primary productivity in the Arctic Ocean[J]. Chinese Journal of Polar Research, 2022, 34(1): 1−10.
    [39]
    陈建芳, 金海燕, 白有成, 等. 北极快速变化的生态环境响应[J]. 海洋学报, 2018, 40(10): 22−31.

    Chen Jianfang, Jin Haiyan, Bai Youcheng, et al. Marine ecological and environmental responses to the Arctic rapid change[J]. Haiyang Xuebao, 2018, 40(10): 22−31.
    [40]
    Lewis K M, Arrigo K R. Ocean color algorithms for estimating chlorophyll a, CDOM absorption, and particle backscattering in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2019JC015706.
    [41]
    徐秋栋. 应用多元统计分析[J]. 工业工程与管理, 2014, 19(1): 22.

    Xu Qiudong. Applied multivariate statistical analysis[J]. Industrial Engineering and Management, 2014, 19(1): 22.
    [42]
    Carranza M M, Gille S T. Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer[J]. Journal of Geophysical Research: Oceans, 2015, 120(1): 304−323. doi: 10.1002/2014JC010203
    [43]
    Wang S, Bailey D, Lindsay K, et al. Impact of sea ice on the marine iron cycle and phytoplankton productivity[J]. Biogeosciences, 2014, 11(17): 4713−4731. doi: 10.5194/bg-11-4713-2014
    [44]
    Sallée J B, Shuckburgh E, Bruneau N, et al. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1830−1844. doi: 10.1002/jgrc.20135
    [45]
    Fauchereau N, Tagliabue A, Bopp L, et al. The response of phytoplankton biomass to transient mixing events in the Southern Ocean[J]. Geophysical Research Letters, 2011, 38(17): L17601.
    [46]
    Cavanagh R D, Murphy E J, Bracegirdle T J, et al. A synergistic approach for evaluating climate model output for ecological applications[J]. Frontiers in Marine Science, 2017, 4: 308. doi: 10.3389/fmars.2017.00308
    [47]
    Boyd P W. Environmental factors controlling phytoplankton processes in the Southern Ocean1[J]. Journal of Phycology, 2002, 38(5): 844−861. doi: 10.1046/j.1529-8817.2002.t01-1-01203.x
    [48]
    柯长青, 金鑫, 沈校熠, 等. 南北极海冰变化及其影响因素的对比分析[J]. 极地研究, 2020, 32(1): 1−12.

    Ke Changqing, Jin Xin, Shen Xiaoyi, et al. Comparison of Antarctic and Arctic sea ice variations and their impact factors[J]. Chinese Journal of Polar Research, 2020, 32(1): 1−12.
    [49]
    邱博, 张录军, 储敏, 等. 气候系统模式对于北极海冰模拟分析[J]. 极地研究, 2015, 27(1): 47−55.

    Qiu Bo, Zhang Lujun, Chu Min, et al. Performance analysis of Arctic sea ice simulation in climate system models[J]. Chinese Journal of Polar Research, 2015, 27(1): 47−55.
    [50]
    魏皓, 赵伟, 罗晓凡, 等. 北冰洋浮游生物空间分布及其季节变化的模拟[J]. 海洋学报, 2019, 41(9): 65−79.

    Wei Hao, Zhao Wei, Luo Xiaofan, et al. Simulation of spatial distribution and seasonal variation of plankton in the Arctic Ocean[J]. Haiyang Xuebao, 2019, 41(9): 65−79.
    [51]
    Jin Meibing, Popova E E, Zhang Jinlun, et al. Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 934−948. doi: 10.1002/2015JC011183
    [52]
    Cullen J J. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39(5): 791−803. doi: 10.1139/f82-108
    [53]
    Martin J, Tremblay J É, Gagnon J, et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters[J]. Marine Ecology Progress Series, 2010, 412: 69−84. doi: 10.3354/meps08666
    [54]
    Arrigo K R, Mills M M, van Dijken G L, et al. Late spring nitrate distributions beneath the ice-covered northeastern Chukchi Shelf[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(9): 2409−2417. doi: 10.1002/2017JG003881
    [55]
    Ardyna M, Babin M, Gosselin M, et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms[J]. Geophysical Research Letters, 2014, 41(17): 6207−6212. doi: 10.1002/2014GL061047
    [56]
    Harrison W G, Cota G F. Primary production in polar waters: relation to nutrient availability[J]. Polar Research, 1991, 10(1): 87−104. doi: 10.1111/j.1751-8369.1991.tb00637.x
    [57]
    Stein R, MacDonald R W. The Organic Carbon Cycle in the Arctic Ocean[M]. New York: Springer, 2004.
    [58]
    Ardyna M, Gosselin M, Michel C, et al. Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: contrasting oligotrophic and eutrophic regions[J]. Marine Ecology Progress Series, 2011, 442: 37−57. doi: 10.3354/meps09378
    [59]
    Michel C, Hamilton J, Hansen E, et al. Arctic Ocean outflow shelves in the changing Arctic: a review and perspectives[J]. Progress in Oceanography, 2015, 139: 66−88. doi: 10.1016/j.pocean.2015.08.007
    [60]
    Tremblay J É, Anderson L G, Matrai P, et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean[J]. Progress in Oceanography, 2015, 139: 171−196. doi: 10.1016/j.pocean.2015.08.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (236) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return