Citation: | Yang Meiqing,Feng Zhixuan,Song Hongjun. Analyze simulation errors of phytoplankton blooms in typical Arctic seas based on CMIP6 models[J]. Haiyang Xuebao,2023, 45(7):40–55 doi: 10.12284/hyxb2023115 |
[1] |
朱大勇, 赵进平, 史久新. 北极楚科奇海海冰面积多年变化的研究[J]. 海洋学报, 2007, 29(2): 25−33.
Zhu Dayong, Zhao Jinping, Shi Jiuxin. Study on the multi-year variations of sea ice cover of Chukchi Sea in Arctic Ocean[J]. Haiyang Xuebao, 2007, 29(2): 25−33.
|
[2] |
Hunt Jr G L, Blanchard A L, Boveng P, et al. The Barents and Chukchi Seas: comparison of two Arctic shelf ecosystems[J]. Journal of Marine Systems, 2013, 109−110: 43−68. doi: 10.1016/j.jmarsys.2012.08.003
|
[3] |
Årthun M, Eldevik T, Smedsrud L H, et al. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat[J]. Journal of Climate, 2012, 25(13): 4736−4743. doi: 10.1175/JCLI-D-11-00466.1
|
[4] |
李正, 沙龙滨, 刘焱光, 等. 末次盛冰期以来巴伦支海−喀拉海古海洋环境及海冰研究进展[J]. 海洋通报, 2021, 40(3): 241−253.
Li Zheng, Sha Longbin, Liu Yanguang, et al. Research progress in the paleoceanography environment and sea ice around Barents-Kara Sea since the Last Glacial Maximum[J]. Marine Science Bulletin, 2021, 40(3): 241−253.
|
[5] |
Sorteberg A, Kvingedal B. Atmospheric forcing on the Barents Sea winter ice extent[J]. Journal of Climate, 2006, 19(19): 4772−4784. doi: 10.1175/JCLI3885.1
|
[6] |
Carmack E C, Macdonald R W, Perkin R G, et al. Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: results from the Larsen-93 expedition[J]. Geophysical Research Letters, 1995, 22(9): 1061−1064. doi: 10.1029/95GL00808
|
[7] |
McLaughlin F A, Carmack E C, Macdonald R W, et al. Physical and geochemical properties across the Atlantic/Pacific water mass front in the southern Canadian Basin[J]. Journal of Geophysical Research: Oceans, 1996, 101(C1): 1183−1197. doi: 10.1029/95JC02634
|
[8] |
Coachman L K, Tripp R B. Currents north of Bering Strait in winter[J]. Limnology and Oceanography, 1970, 15(4): 625−632. doi: 10.4319/lo.1970.15.4.0625
|
[9] |
艾松涛, 陈一凡, 桂大伟, 等. 中国历次极地考察航线及破冰船航行特征分析(1984−2019)[J]. 测绘地理信息, 2021, 46(3): 1−9.
Ai Songtao, Chen Yifan, Gui Dawei, et al. Characteristics analysis on polar voyage routes and navigation of Chinese icebreakers (1984−2019)[J]. Journal of Geomatics, 2021, 46(3): 1−9.
|
[10] |
王锚婷, 王朝晖, 雷明丹, 等. 冰藻在北冰洋生态系统中的重要性及其对全球变暖的响应[J]. 海洋环境科学, 2021, 40(4): 550−554.
Wang Maoting, Wang Zhaohui, Lei Mingdan, et al. The importance of ice algae in the Arctic Ocean ecosystem and their responses to the global warming[J]. Marine Environmental Science, 2021, 40(4): 550−554.
|
[11] |
Song Hongjun, Ji Rubao, Jin Meibing, et al. Strong and regionally distinct links between ice-retreat timing and phytoplankton production in the Arctic Ocean[J]. Limnology and Oceanography, 2021, 66(6): 2498−2508. doi: 10.1002/lno.11768
|
[12] |
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445−456.
Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the coupled model intercomparison project phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445−456.
|
[13] |
Sellar A A, Jones C G, Mulcahy J P, et al. UKESM1: description and evaluation of the U. K. Earth System Model[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4513−4558. doi: 10.1029/2019MS001739
|
[14] |
Adcroft A, Anderson W, Balaji V, et al. The GFDL global ocean and sea ice model OM4.0: model description and simulation features[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(10): 3167−3211. doi: 10.1029/2019MS001726
|
[15] |
Swart N C, Cole J N S, Kharin V V, et al. The Canadian earth system model version 5 (CanESM5.0. 3)[J]. Geoscientific Model Development, 2019, 12(11): 4823−4873. doi: 10.5194/gmd-12-4823-2019
|
[16] |
Mulcahy J P, Johnson C, Jones C G, et al. Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations[J]. Geoscientific Model Development, 2020, 13(12): 6383−6423. doi: 10.5194/gmd-13-6383-2020
|
[17] |
Liu Yaman, Dong Xinyi, Wang Minghuai, et al. Analysis of secondary organic aerosol simulation bias in the Community Earth System Model (CESM2.1)[J]. Atmospheric Chemistry and Physics, 2021, 21(10): 8003−8021. doi: 10.5194/acp-21-8003-2021
|
[18] |
Hague M, Vichi M. A link between CMIP5 phytoplankton phenology and sea ice in the Atlantic Southern Ocean[J]. Geophysical Research Letters, 2018, 45(13): 6566−6575. doi: 10.1029/2018GL078061
|
[19] |
Names and Limits of Oceans and Seas[M]. Monaco: International Hydrographic Bureau, 2002.
|
[20] |
Polyakov I V, Bhatt U S, Walsh J E, et al. Recent oceanic changes in the Arctic in the context of long-term observations[J]. Ecological Applications, 2013, 23(8): 1745−1764. doi: 10.1890/11-0902.1
|
[21] |
Ziehn T, Chamberlain M A, Law R M, et al. The Australian earth system model: ACCESS-ESM1.5[J]. Journal of Southern Hemisphere Earth Systems Science, 2020, 70(1): 193−214. doi: 10.1071/ES19035
|
[22] |
Danabasoglu G, Lamarque J F, Bacmeister J, et al. The community earth system model version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(2): e2019MS001916.
|
[23] |
Lovato T, Peano D, Butenschön M, et al. CMIP6 simulations with the CMCC earth system model (CMCC-ESM2)[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(3): e2021MS002814. doi: 10.1029/2021MS002814
|
[24] |
Séférian R, Nabat P, Michou M, et al. Evaluation of CNRM earth system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4182−4227. doi: 10.1029/2019MS001791
|
[25] |
Sospedra-Alfonso R, Merryfield W J, Boer G J, et al. Decadal climate predictions with the Canadian Earth system model version 5 (CanESM5)[J]. Geoscientific Model Development, 2021, 14(11): 6863−6891. doi: 10.5194/gmd-14-6863-2021
|
[26] |
Dunne J P, Horowitz L W, Adcroft A J, et al. The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(11): e2019MS002015.
|
[27] |
Boucher O, Servonnat J, Albright A L, et al. Presentation and evaluation of the IPSL-CM6A-LR climate model[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(7): e2019MS002010.
|
[28] |
Hajima T, Watanabe M, Yamamoto A, et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks[J]. Geoscientific Model Development, 2020, 13(5): 2197−2244. doi: 10.5194/gmd-13-2197-2020
|
[29] |
Müller W A, Jungclaus J H, Mauritsen T, et al. A higher-resolution version of the max planck institute earth system model (MPI-ESM1.2-HR)[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(7): 1383−1413. doi: 10.1029/2017MS001217
|
[30] |
Forster P M, Maycock A C, McKenna C M, et al. Latest climate models confirm need for urgent mitigation[J]. Nature Climate Change, 2020, 10(1): 7−10. doi: 10.1038/s41558-019-0660-0
|
[31] |
Comiso J C, Meier W N, Gersten R. Variability and trends in the Arctic Sea ice cover: results from different techniques[J]. Journal of Geophysical Research: Oceans, 2017, 122(8): 6883−6900. doi: 10.1002/2017JC012768
|
[32] |
Maritorena S, Siegel D A. Consistent merging of satellite ocean color data sets using a bio-optical model[J]. Remote Sensing of Environment, 2005, 94(4): 429−440. doi: 10.1016/j.rse.2004.08.014
|
[33] |
Deser C, Walsh J E, Timlin M S. Arctic sea ice variability in the context of recent atmospheric circulation trends[J]. Journal of Climate, 2000, 13(3): 617−633. doi: 10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2
|
[34] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7): 7183−7192. doi: 10.1029/2000JD900719
|
[35] |
Li Yun, Ji Rubao, Jenouvrier S, et al. Synchronicity between ice retreat and phytoplankton bloom in circum-Antarctic polynyas[J]. Geophysical Research Letters, 2016, 43(5): 2086−2093. doi: 10.1002/2016GL067937
|
[36] |
Forsythe W C, Rykiel Jr E J, Stahl R S, et al. A model comparison for daylength as a function of latitude and day of year[J]. Ecological Modelling, 1995, 80(1): 87−95. doi: 10.1016/0304-3800(94)00034-F
|
[37] |
Peralta-Ferriz C, Woodgate R A. Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling[J]. Progress in Oceanography, 2015, 134: 19−53. doi: 10.1016/j.pocean.2014.12.005
|
[38] |
庞小平, 胡晓坤, 季青, 等. 北冰洋叶绿素a及初级生产力遥感反演研究进展[J]. 极地研究, 2022, 34(1): 1−10.
Pang Xiaoping, Hu Xiaokun, Ji Qing, et al. Research progress on remote sensing retrieval of chlorophyll a and primary productivity in the Arctic Ocean[J]. Chinese Journal of Polar Research, 2022, 34(1): 1−10.
|
[39] |
陈建芳, 金海燕, 白有成, 等. 北极快速变化的生态环境响应[J]. 海洋学报, 2018, 40(10): 22−31.
Chen Jianfang, Jin Haiyan, Bai Youcheng, et al. Marine ecological and environmental responses to the Arctic rapid change[J]. Haiyang Xuebao, 2018, 40(10): 22−31.
|
[40] |
Lewis K M, Arrigo K R. Ocean color algorithms for estimating chlorophyll a, CDOM absorption, and particle backscattering in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2019JC015706.
|
[41] |
徐秋栋. 应用多元统计分析[J]. 工业工程与管理, 2014, 19(1): 22.
Xu Qiudong. Applied multivariate statistical analysis[J]. Industrial Engineering and Management, 2014, 19(1): 22.
|
[42] |
Carranza M M, Gille S T. Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer[J]. Journal of Geophysical Research: Oceans, 2015, 120(1): 304−323. doi: 10.1002/2014JC010203
|
[43] |
Wang S, Bailey D, Lindsay K, et al. Impact of sea ice on the marine iron cycle and phytoplankton productivity[J]. Biogeosciences, 2014, 11(17): 4713−4731. doi: 10.5194/bg-11-4713-2014
|
[44] |
Sallée J B, Shuckburgh E, Bruneau N, et al. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1830−1844. doi: 10.1002/jgrc.20135
|
[45] |
Fauchereau N, Tagliabue A, Bopp L, et al. The response of phytoplankton biomass to transient mixing events in the Southern Ocean[J]. Geophysical Research Letters, 2011, 38(17): L17601.
|
[46] |
Cavanagh R D, Murphy E J, Bracegirdle T J, et al. A synergistic approach for evaluating climate model output for ecological applications[J]. Frontiers in Marine Science, 2017, 4: 308. doi: 10.3389/fmars.2017.00308
|
[47] |
Boyd P W. Environmental factors controlling phytoplankton processes in the Southern Ocean1[J]. Journal of Phycology, 2002, 38(5): 844−861. doi: 10.1046/j.1529-8817.2002.t01-1-01203.x
|
[48] |
柯长青, 金鑫, 沈校熠, 等. 南北极海冰变化及其影响因素的对比分析[J]. 极地研究, 2020, 32(1): 1−12.
Ke Changqing, Jin Xin, Shen Xiaoyi, et al. Comparison of Antarctic and Arctic sea ice variations and their impact factors[J]. Chinese Journal of Polar Research, 2020, 32(1): 1−12.
|
[49] |
邱博, 张录军, 储敏, 等. 气候系统模式对于北极海冰模拟分析[J]. 极地研究, 2015, 27(1): 47−55.
Qiu Bo, Zhang Lujun, Chu Min, et al. Performance analysis of Arctic sea ice simulation in climate system models[J]. Chinese Journal of Polar Research, 2015, 27(1): 47−55.
|
[50] |
魏皓, 赵伟, 罗晓凡, 等. 北冰洋浮游生物空间分布及其季节变化的模拟[J]. 海洋学报, 2019, 41(9): 65−79.
Wei Hao, Zhao Wei, Luo Xiaofan, et al. Simulation of spatial distribution and seasonal variation of plankton in the Arctic Ocean[J]. Haiyang Xuebao, 2019, 41(9): 65−79.
|
[51] |
Jin Meibing, Popova E E, Zhang Jinlun, et al. Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 934−948. doi: 10.1002/2015JC011183
|
[52] |
Cullen J J. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39(5): 791−803. doi: 10.1139/f82-108
|
[53] |
Martin J, Tremblay J É, Gagnon J, et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters[J]. Marine Ecology Progress Series, 2010, 412: 69−84. doi: 10.3354/meps08666
|
[54] |
Arrigo K R, Mills M M, van Dijken G L, et al. Late spring nitrate distributions beneath the ice-covered northeastern Chukchi Shelf[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(9): 2409−2417. doi: 10.1002/2017JG003881
|
[55] |
Ardyna M, Babin M, Gosselin M, et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms[J]. Geophysical Research Letters, 2014, 41(17): 6207−6212. doi: 10.1002/2014GL061047
|
[56] |
Harrison W G, Cota G F. Primary production in polar waters: relation to nutrient availability[J]. Polar Research, 1991, 10(1): 87−104. doi: 10.1111/j.1751-8369.1991.tb00637.x
|
[57] |
Stein R, MacDonald R W. The Organic Carbon Cycle in the Arctic Ocean[M]. New York: Springer, 2004.
|
[58] |
Ardyna M, Gosselin M, Michel C, et al. Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: contrasting oligotrophic and eutrophic regions[J]. Marine Ecology Progress Series, 2011, 442: 37−57. doi: 10.3354/meps09378
|
[59] |
Michel C, Hamilton J, Hansen E, et al. Arctic Ocean outflow shelves in the changing Arctic: a review and perspectives[J]. Progress in Oceanography, 2015, 139: 66−88. doi: 10.1016/j.pocean.2015.08.007
|
[60] |
Tremblay J É, Anderson L G, Matrai P, et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean[J]. Progress in Oceanography, 2015, 139: 171−196. doi: 10.1016/j.pocean.2015.08.009
|