Citation: | Ke Changqing,Li Haili,Shen Xiaoyi. The analysis on reversal of variation trend in the summer albedo of Antarctic sea-ice zone from 1983 to 2022[J]. Haiyang Xuebao,2023, 45(12):121–132 doi: 10.12284/hyxb2023107 |
[1] |
丁永建, 张世强. 冰冻圈水循环在全球尺度的水文效应[J]. 科学通报, 2015, 60(7): 593−602. doi: 10.1360/N972014-00899
Ding Yongjian, Zhang Shiqiang. The hydrological impact of cryosphere water cycle on global-scale water cycle[J]. Chinese Science Bulletin, 2015, 60(7): 593−602. doi: 10.1360/N972014-00899
|
[2] |
Curry J A, Schramm J I, Ebert E E. Sea ice-albedo climate feedback mechanism[J]. Journal of Climate, 1995, 8(2): 240−247. doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
|
[3] |
Kattsov V M, Ryabinin V E, Overland J E, et al. Arctic sea-ice change: a grand challenge of climate science[J]. Journal of Glaciology, 2010, 56(200): 1115−1121. doi: 10.3189/002214311796406176
|
[4] |
Dickinson R E. Land surface processes and climate-surface albedos and energy balance[J]. Advances in Geophysics, 1983, 25: 305−353.
|
[5] |
Holland M M, Landrum L, Raphael M N, et al. The regional, seasonal, and lagged influence of the Amundsen Sea Low on Antarctic sea ice[J]. Geophysical Research Letters, 2018, 45(20): 11227−11234.
|
[6] |
Holloway G, Sou T. Has Arctic sea ice rapidly thinned?[J]. Journal of Climate, 2002, 15(13): 1691−1701. doi: 10.1175/1520-0442(2002)015<1691:HASIRT>2.0.CO;2
|
[7] |
Parkinson C L, Cavalieri D J. Arctic sea ice variability and trends, 1979–2006[J]. Journal of Geophysical Research, 2008, 113(C7): C07003.
|
[8] |
Massom R A, Eicken H, Hass C, et al. Snow on Antarctic sea ice[J]. Reviews of Geophysics, 2001, 39(3): 413−445. doi: 10.1029/2000RG000085
|
[9] |
Riihelä A, Laine V, Manninen T, et al. Validation of the Climate-SAF surface broadband albedo product: comparisons with in situ observations over Greenland and the ice-covered Arctic Ocean[J]. Remote Sensing of Environment, 2010, 114(11): 2779−2790. doi: 10.1016/j.rse.2010.06.014
|
[10] |
Laine V, Manninen T, Riihelä A. High temporal resolution estimations of the Arctic sea ice albedo during the melting and refreezing periods of the years 2003–2011[J]. Remote Sensing of Environment, 2014, 140: 604−613. doi: 10.1016/j.rse.2013.10.001
|
[11] |
Wang Z, Meredith M P. Density-driven Southern Hemisphere subpolar gyres in coupled climate models[J]. Geophysical Research Letters, 2008, 35(14): L14608.
|
[12] |
Wang Z, Kuhlbrodt T, Meredith M P. On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models[J]. Journal of Geophysical Research: Oceans, 2011, 116(C8): C08011.
|
[13] |
Parkinson C L, Cavalieri D J. Antarctic sea ice variability and trends, 1979–2010[J]. The Cryosphere, 2012, 6(4): 871−880. doi: 10.5194/tc-6-871-2012
|
[14] |
He L Y, Ke C Q, Zhou X B, et al. Antarctic sea ice change based on a new sea ice dataset from 1992 to 2008[J]. Climate Research, 2017, 71(2): 155−169.
|
[15] |
Stammerjohn S, Massom R, Rind D, et al. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison[J]. Geophysical Research Letters, 2012, 39(6): L06501.
|
[16] |
Simpkins G R, Ciasto L M, England M H. Observed variations in multidecadal Antarctic sea ice trends during 1979–2012[J]. Geophysical Research Letters, 2013, 40(14): 3643−3648. doi: 10.1002/grl.50715
|
[17] |
Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends, 1979–2010[J]. The Cryosphere, 2012, 6(4): 881−889. doi: 10.5194/tc-6-881-2012
|
[18] |
Laine V. Antarctic ice sheet and sea ice regional albedo and temperature change, 1981–2000, from AVHRR Polar Pathfinder data[J]. Remote Sensing of Environment, 2008, 112(3): 646−667. doi: 10.1016/j.rse.2007.06.005
|
[19] |
Raphael M N, Handcock M S. A new record minimum for Antarctic sea ice[J]. Nature Reviews Earth & Environment, 2022, 3(4): 215−216.
|
[20] |
Turner J, Holmes C, Caton Harrison T, et al. Record low Antarctic sea ice cover in February 2022[J]. Geophysical Research Letters, 2022, 49(12): e2022GL098904. doi: 10.1029/2022GL098904
|
[21] |
Eayrs C, Li Xichen, Raphael M N, et al. Rapid decline in Antarctic sea ice in recent years hints at future change[J]. Nature Geoscience, 2021, 14(7): 460−464. doi: 10.1038/s41561-021-00768-3
|
[22] |
Parkinson C L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14414−14423.
|
[23] |
Zhou Xiaobing, Li Shusun, Morris K, et al. Albedo of summer snow on sea ice, Ross Sea, Antarctica[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(D16): D16105.
|
[24] |
Pirazzini R. Surface albedo measurements over Antarctic sites in summer[J]. Journal of Geophysical Research: Earth Surface, 2004, 109(D20): D20118.
|
[25] |
Brandt R E, Warren S G, Worby A P, et al. Surface albedo of the Antarctic sea ice zone[J]. Journal of Climate, 2005, 18(17): 3606−3622. doi: 10.1175/JCLI3489.1
|
[26] |
Hao Guanghua, Pirazzini R, Yang Qinghua, et al. Spectral albedo of coastal landfast sea ice in Prydz Bay, Antarctica[J]. Journal of Glaciology, 2021, 67(261): 126−136. doi: 10.1017/jog.2020.90
|
[27] |
Shao Zhude, Ke Changqing. Spring-summer albedo variations of Antarctic sea ice from 1982 to 2009[J]. Environmental Research Letters, 2015, 10(6): 064001. doi: 10.1088/1748-9326/10/6/064001
|
[28] |
Riihelä A, Bright R M, Anttila K. Recent strengthening of snow and ice albedo feedback driven by Antarctic sea-ice loss[J]. Nature Geoscience, 2021, 14(11): 832−836. doi: 10.1038/s41561-021-00841-x
|
[29] |
Zhou Chunxia, Zhang Trng, Zheng Lei. The characteristics of surface albedo change trends over the Antarctic sea ice region during recent decades[J]. Remote Sensing, 2019, 11(7): 821. doi: 10.3390/rs11070821
|
[30] |
Zhang Teng, Zhou Chunxia, Zheng Lei. Analysis of the temporal–spatial changes in surface radiation budget over the Antarctic sea ice region[J]. Science of the Total Environment, 2019, 666: 1134−1150. doi: 10.1016/j.scitotenv.2019.02.264
|
[31] |
Li Huan, Xie Hongjie, Kern S, et al. Spatio-temporal variability of Antarctic sea-ice thickness and volume obtained from ICESat data using an innovative algorithm[J]. Remote Sensing of Environment, 2018, 219: 44−61. doi: 10.1016/j.rse.2018.09.031
|
[32] |
Xiong Xiaozhen, Stamnes K, Lubin D. Surface albedo over the arctic ocean derived from AVHRR and its validation with SHEBA data[J]. Journal of Applied Meteorology and Climatology, 2002, 41(4): 413−425. doi: 10.1175/1520-0450(2002)041<0413:SAOTAO>2.0.CO;2
|
[33] |
Riihelä A, Manninen T, Laine V, et al. CLARA-SAL: a global 28 yr timeseries of Earth’s black-sky surface albedo[J]. Atmospheric Chemistry and Physics, 2013, 13(7): 3743−3762, doi: 10.5194/acp-13-3743-2013
|
[34] |
Satellite Application Facility on Climate Monitoring. Algorithm Theoretical Basis Document CM SAF Cloud, Albedo, Radiation data record, AVHRR-based, Edition 2.1 (CLARA-A2.1) Surface Albedo[R/OL]. [2022−11−18]. https://www.cmsaf.eu/SharedDocs/Literatur/document/2020/saf_cm_fmi_atbd_gac_sal_2_4_pdf.pdf?__blob=publicationFile.
|
[35] |
Satellite Application Facility on Climate Monitoring. Product User Manual ICDR AVHRR–based on CLARA-A2 methods Surface Albedo[R/OL]. [2022−11−18]. https://www.cmsaf.eu/SharedDocs/Literatur/document/2021/saf_cm_fmi_icdr_clara_sal_pum_2_1_pdf.pdf?__blob=publicationFile.
|
[36] |
Karlsson K G, Anttila K, Trentmann J, et al. CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data[J]. Atmospheric Chemistry and Physics, 2017, 17(9): 5809−5828. doi: 10.5194/acp-17-5809-2017
|
[37] |
Allison I, Brandt R E, Warren S G. East Antarctic sea ice: albedo, thickness distribution, and snow cover[J]. Journal of Geophysical Research: Oceans, 1993, 98(C7): 12417−12429. doi: 10.1029/93JC00648
|
[38] |
Lei Ruibo, Tian-Kunze Xiangshan, Leppäranta M, et al. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific Sector of Arctic Ocean during 1982–2009[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 5470–5486.
|
[39] |
Perovich D K, Nghiem S V, Markus T, et al. Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice-ocean system[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): C03005.
|
[40] |
Riihelä A, Manninen T, Laine V. Observed changes in the albedo of the Arctic sea-ice zone for the period 1982–2009[J]. Nature Climate Change, 2013, 3(10): 895−898. doi: 10.1038/nclimate1963
|
[41] |
Weiss A I, King J C, Lachlan-Cope T A, et al. Albedo of the ice covered Weddell and Bellingshausen Seas[J]. The Cryosphere, 2012, 6(2): 479−491. doi: 10.5194/tc-6-479-2012
|
[42] |
Nan Sulan, Li Jianping. The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode[J]. Geophysical Research Letters, 2003, 30(24): 2266.
|
[43] |
Gong Daoyi, Wang Shaowu. Definition of Antarctic oscillation index[J]. Geophysical Research Letters, 1999, 26(4): 459−462. doi: 10.1029/1999GL900003
|
[44] |
Feng Juan, Li Jianping, Li Yun. Is there a relationship between the SAM and southwest Western Australian winter rainfall?[J]. Journal of Climate, 2010, 23(22): 6082−6089. doi: 10.1175/2010JCLI3667.1
|
[45] |
Yuan Zhengxuan, Qin Jun, Li Shuanglin, et al. Impact of boreal autumn Antarctic Oscillation on winter wet-cold weather in the middle-lower reaches of Yangtze River Basin[J]. Climate Dynamics, 2022, 58(1/2): 329−349.
|
[46] |
Lefebvre W, Goosse H, Timmermann R, et al. Influence of the Southern Annular Mode on the sea ice–ocean system[J]. Journal of Geophysical Research: Oceans, 2004, 109(C9): C09005.
|
[47] |
Purich A, Cai Wenju, England M H, et al. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes[J]. Nature Communications, 2016, 7: 10409. doi: 10.1038/ncomms10409
|