Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
Cheng Lingqiao,Meng Junjie,Li Deng, et al. Interannual variability of winter water in the Indian Ocean Sector of the Southern Ocean and its causes during 2011−2020[J]. Haiyang Xuebao,2023, 45(8):11–23 doi: 10.12284/hyxb2023100
Citation: Cheng Lingqiao,Meng Junjie,Li Deng, et al. Interannual variability of winter water in the Indian Ocean Sector of the Southern Ocean and its causes during 2011−2020[J]. Haiyang Xuebao,2023, 45(8):11–23 doi: 10.12284/hyxb2023100

Interannual variability of winter water in the Indian Ocean Sector of the Southern Ocean and its causes during 2011−2020

doi: 10.12284/hyxb2023100
  • Received Date: 2022-11-09
  • Rev Recd Date: 2023-03-31
  • Available Online: 2023-08-22
  • Publish Date: 2023-08-31
  • Multiple studies have confirmed the long-term property modification of water columns from the bottom to the sea surface at the Southern Ocean and pointed out that it is closely related to the changes of large-scale external forcing. However, the higher frequency interannual variability of the water masses and its causes are still poorly understood, including the winter water (WW), which is the most vulnerable to external forcing near the sea surface. Based on repeated hydrographic observations along 110°E in Januaries 2011 to 2020 and meteorological reanalysis datasets, this study estimated interannual variability of the WW layer in the seasonal ice zone (SIZ) and its possible causes over ten years. Results show that WW properties have significant temporal and spatial variability in this region. A significant positive correlation between the WW core temperature anomaly and the previous-year Antarctic Oscillation (AAO) index anomaly (R = 0.69) and a negative correlation between the AAO index and the turning latitude of the local zonal wind component (R = −0.61), indicate that a larger (smaller) AAO index corresponds to a southward (northward) shift of the divergence zone, and the increase (decrease) of the WW core temperature in the SIZ. A negative correspondence between the local net precipitation anomaly and the WW core salinity anomaly indicates the negative net precipitation anomaly (less freshwater transport to the ocean) after 2016 contributes to an increase in the WW core salinity anomaly. Meanwhile, the local eddy kinetic energy anomaly is negatively correlated with the WW thickness anomaly (R = −0.70), which supports the idea that the enhancement (decrease) in the intensity of persistent cyclonic eddies in this region may strengthen (weaken) the upward pumping to shoal the depth of the circumpolar deep water, and further affect the WW thickness. This study contributes to an in-depth understanding of the specific response of water columns in the Southern Ocean to the high-frequency variability of external forcing.
  • loading
  • [1]
    Rintoul S R, England M H. Ekman transport dominates local air-sea fluxes in driving variability of Subantarctic mode water[J]. Journal of Physical Oceanography, 2002, 32(5): 1308−1321. doi: 10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2
    [2]
    Williams R G. Ocean eddies and plankton blooms[J]. Nature Geoscience, 2011, 4(11): 739−740. doi: 10.1038/ngeo1307
    [3]
    Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1): 55−109. doi: 10.1016/S0079-6611(99)00004-X
    [4]
    Speer K, Rintoul S R, Sloyan B. The diabatic Deacon cell[J]. Journal of Physical Oceanography, 2000, 30(12): 3212−3222. doi: 10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2
    [5]
    Rintoul S R, Sokolov S, Church J. A 6 year record of baroclinic transport variability of the Antarctic Circumpolar Current at 140°E derived from expendable bathythermograph and altimeter measurements[J]. Journal of Geophysical Research: Oceans, 2002, 107(C10): 19−1−19−22.
    [6]
    Broecker W S. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance?[J]. Science, 1997, 278(5343): 1582−1588. doi: 10.1126/science.278.5343.1582
    [7]
    Aoki S, Rintoul S R, Ushio S, et al. Freshening of the Adélie Land Bottom Water near 140°E[J]. Geophysical Research Letters, 2005, 32(23): L23601. doi: 10.1029/2005GL024246
    [8]
    Aoki S, Kitade Y, Shimada K, et al. Widespread freshening in the Seasonal Ice Zone near 140°E off the Adélie Land Coast, Antarctica, from 1994 to 2012[J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 6046−6063. doi: 10.1002/2013JC009009
    [9]
    Aoki S, Katsumata K, Hamaguchi M, et al. Freshening of Antarctic bottom water off Cape Darnley, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2020, 125(8): e2020JC016374.
    [10]
    Rintoul S R. Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans[J]. Geophysical Research Letters, 2007, 34(6): L06606.
    [11]
    Johnson G C, Purkey S G, Bullister J L. Warming and freshening in the abyssal southeastern Indian Ocean[J]. Journal of Climate, 2008, 21(20): 5351−5363. doi: 10.1175/2008JCLI2384.1
    [12]
    Meredith M P, Garabato A C N, Gordon A L, et al. Evolution of the deep and bottom waters of the Scotia Sea, Southern Ocean, during 1995−2005[J]. Journal of Climate, 2008, 21(13): 3327−3343. doi: 10.1175/2007JCLI2238.1
    [13]
    Jacobs S S, Giulivi C F. Large multidecadal salinity trends near the Pacific-Antarctic continental margin[J]. Journal of Climate, 2010, 23(17): 4508−4524. doi: 10.1175/2010JCLI3284.1
    [14]
    Purkey S G, Johnson G C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets[J]. Journal of Climate, 2010, 23(23): 6336−6351. doi: 10.1175/2010JCLI3682.1
    [15]
    Purkey S G, Johnson G C. Global contraction of Antarctic Bottom Water between the 1980s and 2000s[J]. Journal of Climate, 2012, 25(17): 5830−5844. doi: 10.1175/JCLI-D-11-00612.1
    [16]
    Fahrbach E, Hoppema M, Rohardt G, et al. Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: The Weddell gyre as a heat buffer[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58(25/26): 2509−2523.
    [17]
    Azaneu M, Kerr R, Mata M M, et al. Trends in the deep Southern Ocean (1958−2010): Implications for Antarctic Bottom Water properties and volume export[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4213−4227. doi: 10.1002/jgrc.20303
    [18]
    Gille S T. Decadal-scale temperature trends in the Southern Hemisphere ocean[J]. Journal of Climate, 2008, 21(18): 4749−4765. doi: 10.1175/2008JCLI2131.1
    [19]
    Böning C W, Dispert A, Visbeck M, et al. The response of the Antarctic Circumpolar Current to recent climate change[J]. Nature Geoscience, 2008, 1(12): 864−869. doi: 10.1038/ngeo362
    [20]
    Aoki S. Trends and interannual variability of surface layer temperature in the Indian Sector of the Southern Ocean observed by Japanese Antarctic Research expeditions[J]. Journal of Oceanography, 1997, 53(6): 623−631.
    [21]
    Aoki S, Yoritaka M, Masuyama A. Multidecadal warming of subsurface temperature in the Indian Sector of the Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2003, 108(C4): 8081. doi: 10.1029/2000JC000307
    [22]
    Siems S T, Huang Yi, Manton M J. Southern Ocean precipitation: toward a process-level understanding[J]. WIREs Climate Change, 2022, 13(6): e800.
    [23]
    Helm K P, Bindoff N L, Church J A. Changes in the global hydrological-cycle inferred from ocean salinity[J]. Geophysical Research Letters, 2010, 37(18): L18701.
    [24]
    Durack P J, Wijffels S E, Matear R J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000[J]. Science, 2012, 336(6080): 455−458. doi: 10.1126/science.1212222
    [25]
    Haumann F A, Gruber N, Münnich M, et al. Sea-ice transport driving Southern Ocean salinity and its recent trends[J]. Nature, 2016, 537(7618): 89−92. doi: 10.1038/nature19101
    [26]
    Hu Yuyi, Shao Weizeng, Li Jun, et al. Short-term variations in water temperature of the Antarctic surface layer[J]. Journal of Marine Science and Engineering, 2022, 10(2): 287. doi: 10.3390/jmse10020287
    [27]
    Auger M, Morrow R, Kestenare E, et al. Southern ocean in-situ temperature trends over 25 years emerge from interannual variability[J]. Nature Communications, 2021, 12(1): 1840. doi: 10.1038/s41467-021-22318-6
    [28]
    Robertson R, Visbeck M, Gordon A L, et al. Long-term temperature trends in the deep waters of the Weddell Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(21): 4791−4806. doi: 10.1016/S0967-0645(02)00159-5
    [29]
    Fahrbach E, Hoppema M, Rohardt G, et al. Decadal-scale variations of water mass properties in the deep Weddell Sea[J]. Ocean Dynamics, 2004, 54(1): 77−91. doi: 10.1007/s10236-003-0082-3
    [30]
    Jullion L, Jones S C, Garabato A C N, et al. Wind-controlled export of Antarctic Bottom Water from the Weddell Sea[J]. Geophysical Research Letters, 2010, 37(9): L09609.
    [31]
    Meredith M P, Gordon A L, Garabato A C N, et al. Synchronous intensification and warming of Antarctic Bottom Water outflow from the Weddell Gyre[J]. Geophysical Research Letters, 2011, 38(3): L03603.
    [32]
    Whitworth III T. Two modes of bottom water in the Australian-Antarctic Basin[J]. Geophysical Research Letters, 2002, 29(5): 17−1−17−3.
    [33]
    Purkey S G, Johnson G C. Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain[J]. Journal of Climate, 2013, 26(16): 6105−6122. doi: 10.1175/JCLI-D-12-00834.1
    [34]
    Van Wijk E M, Rintoul S R. Freshening drives contraction of Antarctic bottom water in the Australian Antarctic Basin[J]. Geophysical Research Letters, 2014, 41(5): 1657−1664. doi: 10.1002/2013GL058921
    [35]
    Menezes V V, Macdonald A M, Schatzman C. Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean[J]. Science Advances, 2017, 3(1): e1601426. doi: 10.1126/sciadv.1601426
    [36]
    Shimada K, Kitade Y, Aoki S, et al. Shoaling of abyssal ventilation in the Eastern Indian Sector of the Southern Ocean[J]. Communications Earth & Environment, 2022, 3(1): 120.
    [37]
    Castagno P, Capozzi V, DiTullio G R, et al. Rebound of shelf water salinity in the Ross Sea[J]. Nature Communications, 2019, 10(1): 5441. doi: 10.1038/s41467-019-13083-8
    [38]
    Silvano A, Foppert A, Rintoul S R, et al. Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies[J]. Nature Geoscience, 2020, 13(12): 780−786. doi: 10.1038/s41561-020-00655-3
    [39]
    Orsi A H, Whitworth III T, Nowlin W D Jr. On the meridional extent and fronts of the Antarctic Circumpolar Current[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42(5): 641−673. doi: 10.1016/0967-0637(95)00021-W
    [40]
    Park Y H, Charriaud E, Fieux M. Thermohaline structure of the Antarctic surface water/winter water in the Indian Sector of the Southern Ocean[J]. Journal of Marine Systems, 1998, 17(1/4): 5−23.
    [41]
    Sabu P, Libera S A, Chacko R, et al. Winter water variability in the Indian Ocean Sector of Southern Ocean during austral summer[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 178: 104852. doi: 10.1016/j.dsr2.2020.104852
    [42]
    Shimada K, Aoki S, Ohshima K I. Creation of a gridded dataset for the Southern Ocean with a topographic constraint scheme[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(3): 511−532. doi: 10.1175/JTECH-D-16-0075.1
    [43]
    Shimada K, Makabe R, Takao S, et al. Physical and chemical oceanographic data during Umitaka-maru cruise of the 58th Japanese Antarctic Research Expedition in January 2017[J]. Polar Data Journal, 2020, 4: 1−29.
    [44]
    李亚婧. 南极半岛周边海域水团性质及水交换特征的研究[D]. 青岛: 自然资源部第一海洋研究所, 2019.

    Li Yajing. Study on the properties and exchanges of water masses in the region of Antarctic Peninsula[D]. Qingdao: First Institute of Oceanography, MNR, 2019.
    [45]
    Amante C, Eakins B W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis[R]. Boulder: National Oceanic and Atmospheric Administration, 2009.
    [46]
    Thompson D W J, Solomon S, Kushner P J, et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change[J]. Nature Geoscience, 2011, 4(11): 741−749. doi: 10.1038/ngeo1296
    [47]
    Schlosser E, Haumann F A, Raphael M N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay[J]. The Cryosphere, 2018, 12(3): 1103−1119. doi: 10.5194/tc-12-1103-2018
    [48]
    严晨冰, 程灵巧, 朱国平. 南极斯科舍海涡旋分布及其内部水文结构特征分析[J]. 海洋学报, 2022, 44(3): 1−14.

    Yan Chenbing, Cheng Lingqiao, Zhu Guoping. Distribution and the internal hydrographic characteristics of eddies in the Scotia Sea, Antarctica[J]. Haiyang Xuebao, 2022, 44(3): 1−14.
    [49]
    李等, 程灵巧, 严晨冰, 等. 基于2005−2019年卫星遥感观测的南大洋印度洋扇区中部涡旋特征分布研究[J]. 海洋与湖沼, 2022, 53(5): 1054−1066. doi: 10.11693/hyhz20220100005

    Li Deng, Cheng Lingqiao, Yan Chenbing, et al. Characteristics of eddies in the Central Indian Sector of the Southern Ocean based on satellite observation from 2005 to 2019[J]. Oceanologia et Limnologia Sinica, 2022, 53(5): 1054−1066. doi: 10.11693/hyhz20220100005
    [50]
    Wakatsuchi M, Ohshima K I, Hishida M, et al. Observations of a street of cyclonic eddies in the Indian Ocean Sector of the Antarctic divergence[J]. Journal of Geophysical Research: Oceans, 1994, 99(C10): 20417−20426. doi: 10.1029/94JC01478
    [51]
    Mizobata K, Shimada K, Aoki S, et al. The cyclonic eddy train in the Indian Ocean Sector of the Southern Ocean as revealed by satellite radar altimeters and in situ measurements[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2019JC015994.
    [52]
    Stuecker M F, Bitz C M, Armour K C. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season[J]. Geophysical Research Letters, 2017, 44(17): 9008−9019. doi: 10.1002/2017GL074691
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (290) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return