Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Xie Dongmei,Chen Yongping,Yu Qianqian, et al. Study on the non-stationary characteristics of extreme storm surges along the Changjiang River Estuary[J]. Haiyang Xuebao,2023, 45(7):25–39 doi: 10.12284/hyxb2023099
Citation: Xie Dongmei,Chen Yongping,Yu Qianqian, et al. Study on the non-stationary characteristics of extreme storm surges along the Changjiang River Estuary[J]. Haiyang Xuebao,2023, 45(7):25–39 doi: 10.12284/hyxb2023099

Study on the non-stationary characteristics of extreme storm surges along the Changjiang River Estuary

doi: 10.12284/hyxb2023099
  • Received Date: 2022-06-23
  • Rev Recd Date: 2023-02-08
  • Available Online: 2023-03-03
  • Publish Date: 2023-07-01
  • Under the background of global climate change, the extreme storm surge events caused by tropical cyclones in the Changjiang River Estuary and adjacent coastal area present non-stationary feature. In this study, a storm surge model for the Changjiang River Estuary was constructed using the ADCIRC model to reproduce the storm surges during 241 tropical cyclones affecting the Changjiang River Estuary from 1979 to 2019. By combining the non-stationary generalized extreme value distribution with the state space approach, a statistical model for capturing the non-stationarity of extreme storm surges was built to investigate the spatiotemporal variability of the extreme storm surges in the Changjiang River Estuary and its adjacent coastal area. The statistical model can well reproduce the non-stationary feature of extreme storm surges, which was mainly represented by the time-dependent location parameter. The time-dependent location parameters at the tidal gauge stations were stationary before 2008 and presented increasing trends afterwards, which was mainly caused by the increase of the annual second- and third-largest storm surges. The reoccurrence period of storm surge event with 100-year return period under the stationary assumption was reduced to around 40–80 years, indicating an increased flood risk in the Changjiang River Estuary. Combined with the changes in the intensity and path of the tropical cyclones that caused the annual second- and third-largest storm surges, it was concluded that the increasing trends of extreme storm surges were mainly caused by the increase in the intensity of the tropical cyclone that tracking northward to the offshore of the Changjiang River Estuary and veering eastwards.
  • loading
  • [1]
    Mawdsley R J, Haigh I D. Spatial and temporal variability and long-term trends in skew surges globally[J]. Frontiers in Marine Science, 2016, 3: 29.
    [2]
    Wood M, Haigh I D, Le Quanquan, et al. Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region[J]. Natural Hazards and Earth System Sciences Discussions, 2023, 23(7): 2475−2504.
    [3]
    IPCC. Climate change 2021: the physical science basis. Contribution of Working Group I to the sixth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2021.
    [4]
    Marcos M, Calafat F M, Berihuete Á, et al. Long-term variations in global sea level extremes[J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 8115−8134. doi: 10.1002/2015JC011173
    [5]
    Muis S, Verlaan M, Winsemius H C, et al. A global reanalysis of storm surges and extreme sea levels[J]. Nature Communications, 2016, 7(1): 11969. doi: 10.1038/ncomms11969
    [6]
    Muis S, Verlaan M, Nicholls R J, et al. A comparison of two global datasets of extreme sea levels and resulting flood exposure[J]. Earth’s Future, 2017, 5(4): 379−392. doi: 10.1002/2016EF000430
    [7]
    Merrifield M A, Genz A S, Kontoes C P, et al. Annual maximum water levels from tide gauges: contributing factors and geographic patterns[J]. Journal of Geophysical Research: Oceans, 2013, 118(5): 2535−2546. doi: 10.1002/jgrc.20173
    [8]
    Pugh D, Woodworth P. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes[M]. Cambridge: Cambridge University Press, 2014.
    [9]
    Woodworth P L, Blackman D L. Evidence for systematic changes in extreme high waters since the mid-1970s[J]. Journal of Climate, 2004, 17(6): 1190−1197. doi: 10.1175/1520-0442(2004)017<1190:EFSCIE>2.0.CO;2
    [10]
    Menéndez M, Woodworth P L. Changes in extreme high water levels based on a quasi-global tide-gauge data set[J]. Journal of Geophysical Research: Oceans, 2010, 115(C10): C10011.
    [11]
    Butler A, Heffernan J E, Tawn J A, et al. Extreme value analysis of decadal variations in storm surge elevations[J]. Journal of Marine Systems, 2007, 67(1/2): 189−200.
    [12]
    Haigh I, Nicholls R, Wells N. Assessing changes in extreme sea levels: application to the English Channel, 1900−2006[J]. Continental Shelf Research, 2010, 30(9): 1042−1055. doi: 10.1016/j.csr.2010.02.002
    [13]
    Haigh I D, Wadey M P, Wahl T, et al. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK[J]. Scientific Data, 2016, 3(1): 160107. doi: 10.1038/sdata.2016.107
    [14]
    Marcos M, Tsimplis M N, Shaw A G P. Sea level extremes in southern Europe[J]. Journal of Geophysical Research: Oceans, 2009, 114(C1): C01007.
    [15]
    Dangendorf S, Mudersbach C, Wahl T, et al. Characteristics of intra-, inter-annual and decadal sea-level variability and the role of meteorological forcing: the long record of Cuxhaven[J]. Ocean Dynamics, 2013, 63(2/3): 209−224.
    [16]
    Mudersbach C, Wahl T, Haigh I D, et al. Trends in high sea levels of German North Sea gauges compared to regional mean sea level changes[J]. Continental Shelf Research, 2013, 65: 111−120. doi: 10.1016/j.csr.2013.06.016
    [17]
    Cid A, Menéndez M, Castanedo S, et al. Long-term changes in the frequency, intensity and duration of extreme storm surge events in southern Europe[J]. Climate Dynamics, 2016, 46(5/6): 1503−1516.
    [18]
    Marcos M, Woodworth P L. Spatiotemporal changes in extreme sea levels along the coasts of the North Atlantic and the Gulf of Mexico[J]. Journal of Geophysical Research: Oceans, 2017, 122(9): 7031−7048. doi: 10.1002/2017JC013065
    [19]
    侯京明, 于福江, 原野, 等. 影响我国的重大台风风暴潮时空分布[J]. 海洋通报, 2011, 30(5): 535−539.

    Hou Jingming, Yu Fujiang, Yuan Ye, et al. Spatial and temporal distribution of red tropical storm surge disasters in China[J]. Marine Science Bulletin, 2011, 30(5): 535−539.
    [20]
    Feng Xiangbo, Tsimplis M N. Sea level extremes at the coasts of China[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 1593−1608. doi: 10.1002/2013JC009607
    [21]
    Feng Jianlong, Von Storch H, Jiang Wensheng, et al. Assessing changes in extreme sea levels along the coast of China[J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 8039−8051. doi: 10.1002/2015JC011336
    [22]
    Oey L Y, Chou S. Evidence of rising and poleward shift of storm surge in western North Pacific in recent decades[J]. Journal of Geophysical Research: Oceans, 2016, 121(7): 5181−5192. doi: 10.1002/2016JC011777
    [23]
    Feng Jianlong, Li Delei, Li Yan, et al. Storm surge variation along the coast of the Bohai Sea[J]. Scientific Reports, 2018, 8(1): 11309. doi: 10.1038/s41598-018-29712-z
    [24]
    Zhang Wei, Yan Yixin, Zheng Jinhai, et al. Temporal and spatial variability of annual extreme water level in the Pearl River Delta region, China[J]. Global and Planetary Change, 2009, 69(1/2): 35−47.
    [25]
    董剑希, 李涛, 侯京明. 福建省风暴潮时空分布特征分析[J]. 海洋通报, 2016, 35(3): 331−339.

    Dong Jianxi, Li Tao, Hou Jingming. Analysis on the spatial and temporal distribution characteristics of the storm surge of Fujian Province[J]. Marine Science Bulletin, 2016, 35(3): 331−339.
    [26]
    袁方超, 吴向荣, 卢君峰. 福建中南部沿海风暴潮统计特征分析[J]. 海洋预报, 2018, 35(3): 68−75.

    Yuan Fangchao, Wu Xiangrong, Lu Junfeng. Statistical characteristics of storm surges in central and southern Fujian coast[J]. Marine Forecasts, 2018, 35(3): 68−75.
    [27]
    Feng Xingru, Li Mingjie, Yin Baoshu, et al. Study of storm surge trends in typhoon-prone coastal areas based on observations and surge-wave coupled simulations[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 68: 272−278. doi: 10.1016/j.jag.2018.01.006
    [28]
    张海燕. 南海区台风风暴潮时空分布特征[J]. 海洋预报, 2019, 36(6): 1−8.

    Zhang Haiyan. Spatio-temporal distribution of typhoon storm surge along the South China Sea coast[J]. Marine Forecasts, 2019, 36(6): 1−8.
    [29]
    Feng Jianlong, Jiang Wensheng. Extreme water level analysis at three stations on the coast of the Northwestern Pacific Ocean[J]. Ocean Dynamics, 2015, 65(11): 1383−1397. doi: 10.1007/s10236-015-0881-3
    [30]
    陈剑飞, 苏志, 罗红磊. 2001−2018年广西沿海风暴潮特征分析[J]. 气象研究与应用, 2020, 41(2): 21−24.

    Chen Jianfei, Su Zhi, Luo Honglei. Characteristics of storm surge in Guangxi coastal area from 2001 to 2018[J]. Journal of Meteorological Research and Application, 2020, 41(2): 21−24.
    [31]
    Leadbetter M R, Lindgren G, Rootzén H. Extremes and Related Properties of Random Sequences and Processes[M]. New York: Springer, 2012.
    [32]
    Hüsler J. Extreme values of non-stationary random sequences[J]. Journal of Applied Probability, 1986, 23(4): 937−950. doi: 10.2307/3214467
    [33]
    Dixon M J, Tawn J A. The effect of non-stationarity on extreme sea-level estimation[J]. Journal of the Royal Statistical Society Series C:Applied Statistics, 1999, 48(2): 135−151. doi: 10.1111/1467-9876.00145
    [34]
    Calafat F M, Marcos M. Probabilistic reanalysis of storm surge extremes in Europe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(4): 1877−1883. doi: 10.1073/pnas.1913049117
    [35]
    鲁帆, 肖伟华, 严登华, 等. 非平稳时间序列极值统计模型及其在气候−水文变化研究中的应用综述[J]. 水利学报, 2017, 48(4): 379−389.

    Lu Fan, Xiao Weihua, Yan Denghua, et al. Progresses on statistical modeling of non-stationary extreme sequences and its application in climate and hydrological change[J]. Journal of Hydraulic Engineering, 2017, 48(4): 379−389.
    [36]
    Serinaldi F, Kilsby C G. Stationarity is undead: uncertainty dominates the distribution of extremes[J]. Advances in Water Resources, 2015, 77: 17−36. doi: 10.1016/j.advwatres.2014.12.013
    [37]
    陈升, 甘敏, 孙丽, 等. 上海沿海风暴潮历史特征分析[J]. 海洋学研究, 2021, 39(4): 101−108.

    Chen Sheng, Gan Min, Sun Li, et al. Historical characteristics of the storm surges along Shanghai coast[J]. Journal of Marine Sciences, 2021, 39(4): 101−108.
    [38]
    Luettich R A Jr, Westerink J J, Scheffner N W. ADCIRC: an advanced three-dimensional circulation model for shelves coasts and estuaries, Report 1: theory and methodology of ADCIRC-2DDI and ADCIRC-3DL[R]. Vicksburg: Army Engineers Waterways Experiment Station, 1992.
    [39]
    Westerink J J, Luettich R A Jr, Blain C A, et al. ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 2. User’s manual for ADCIRC-2DDI[R]. Vicksburg: Army Engineer Waterways Experiment Station, 1994.
    [40]
    Pan Yi, Chen Yongping, Li Jiangxia, et al. Improvement of wind field hindcasts for tropical cyclones[J]. Water Science and Engineering, 2016, 9(1): 58−66. doi: 10.1016/j.wse.2016.02.002
    [41]
    Xiong Jie, Yu Fujiang, Fu Cifu, et al. Evaluation and improvement of the ERA5 wind field in typhoon storm surge simulations[J]. Applied Ocean Research, 2022, 118: 103000. doi: 10.1016/j.apor.2021.103000
    [42]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [43]
    Jelesnianski C P. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf[J]. Monthly Weather Review, 1965, 93(6): 343−358. doi: 10.1175/1520-0493(1993)093<0343:ANCOS>2.3.CO;2
    [44]
    Li Jiangxia, Pan Shunqi, Chen Yongping, et al. Numerical estimation of extreme waves and surges over the northwest Pacific Ocean[J]. Ocean Engineering, 2018, 153: 225−241. doi: 10.1016/j.oceaneng.2018.01.076
    [45]
    Jakobsen F, Madsen H. Comparison and further development of parametric tropical cyclone models for storm surge modelling[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(5): 375−391. doi: 10.1016/j.jweia.2004.01.003
    [46]
    Knaff J A, Sampson C R, DeMaria M, et al. Statistical tropical cyclone wind radii prediction using climatology and persistence[J]. Weather and Forecasting, 2007, 22(4): 781−791. doi: 10.1175/WAF1026.1
    [47]
    Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
    [48]
    Lu Xiaoqin, Yu Hui, Ying Ming, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690−699. doi: 10.1007/s00376-020-0211-7
    [49]
    Kapoor D C. General bathymetric chart of the oceans (GEBCO)[J]. Marine Geodesy, 1981, 5(1): 73−80. doi: 10.1080/15210608109379408
    [50]
    Egbert G D, Bennett A F, Foreman M G G. TOPEX/POSEIDON tides estimated using a global inverse model[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24821−24852. doi: 10.1029/94JC01894
    [51]
    Méndez F J, Menéndez M, Luceño A, et al. Analyzing monthly extreme sea levels with a time-dependent GEV model[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(5): 894−911. doi: 10.1175/JTECH2009.1
    [52]
    Mentaschi L, Vousdoukas M, Voukouvalas E, et al. The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis[J]. Hydrology and Earth System Sciences, 2016, 20(9): 3527−3547. doi: 10.5194/hess-20-3527-2016
    [53]
    Zadeh L, Desoer C. Linear System Theory: the State Space Approach[M]. New York: Courier Dover Publications, 2008.
    [54]
    Andrieu C, Doucet A, Holenstein R. Particle Markov chain Monte Carlo methods[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2010, 72(3): 269−342. doi: 10.1111/j.1467-9868.2009.00736.x
    [55]
    Lindsten F, Jordan M I, Schön T B. Particle Gibbs with ancestor sampling[J]. The Journal of Machine Learning Research, 2014, 15(1): 2145−2184.
    [56]
    Geweke J, Tanizaki H. Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling[J]. Computational Statistics & Data Analysis, 2001, 37(2): 151−170.
    [57]
    Knapp K R, Kruk M C, Levinson D H, et al. The international best track archive for climate stewardship (IBTrACS): unifying tropical cyclone data[J]. Bulletin of the American Meteorological Society, 2010, 91(3): 363−376. doi: 10.1175/2009BAMS2755.1
    [58]
    Knapp K R, Diamond H J, Kossin J P, et al. International best track archive for climate stewardship (IBTrACS) project, version 4[DB/OL]. [2022–06–22]. https://doi.org/10.25921/82ty-9e16.
    [59]
    魏凤英. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社, 2007.

    Wei Fengying. Modern Technology of Statistics, Diagnosis and Forecast for Climate[M]. 2nd ed. Beijing: China Meteorological Press, 2007.
    [60]
    中华人民共和国交通运输部. JTS 145−2015, 港口与航道水文规范[S]. 北京: 人民交通出版社, 2015.

    Ministry of Transport of the People’s Republic of China. JTS 145−2015, Code of hydrology for harbour and waterway[S]. Beijing: China Communications Press, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article views (414) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return