Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Sun Lu,Shan Hongxian,Zhang Hong, et al. Determination of sediment liquefaction depth based on 210Pb, 137Cs distribution and grain-size characteristic: Take the Chengdao sea area as an example[J]. Haiyang Xuebao,2023, 45(10):105–113 doi: 10.12284/hyxb2023091
Citation: Sun Lu,Shan Hongxian,Zhang Hong, et al. Determination of sediment liquefaction depth based on 210Pb, 137Cs distribution and grain-size characteristic: Take the Chengdao sea area as an example[J]. Haiyang Xuebao,2023, 45(10):105–113 doi: 10.12284/hyxb2023091

Determination of sediment liquefaction depth based on 210Pb, 137Cs distribution and grain-size characteristic: Take the Chengdao sea area as an example

doi: 10.12284/hyxb2023091
  • Received Date: 2022-10-25
  • Rev Recd Date: 2022-12-10
  • Available Online: 2023-11-17
  • Publish Date: 2023-10-30
  • The phenomenon of seabed liquefaction is widely distributed in the underwater delta of the Huanghe River, which poses a great threat to submarine engineering facilities. The determination of liquefaction depth can provide a reference for offshore engineering construction, which has great theoretical significance and application value. The columnar sediments were obtained by drilling in the liquefaction disturbance area of Chengdao sea area in the north of the Huanghe River Delta, and the profile image scanning, radionuclide and particle size composition testing were carried out to obtain the image stratification characteristics, 210Pb, 137Cs activity and particle size profile, and the deposition rate was calculated on this basis. The results show that the Chengdao sea area was significantly affected by the change of the Huanghe River from the Diaokou channel in 1976, and the sedimentation rate decreased significantly during this period and showed a phased character. During the rapid deposition period, the sand layer produced by frequent liquefaction of surface sediments accumulated continuously, thus forming the dense sand layer. By analyzing 210Pbex and 137Cs activity profiles, the sedimentary records of liquefaction history in the study area were obtained, and the historical liquefaction depth was determined to be at least 5 m, which is similar to previous studies. It is feasible to use the activity of 210Pb and 137Cs as tools to judge the history and depth of sediment liquefaction, which has great development potential.
  • loading
  • [1]
    师长兴. 1976年以来黄河口泥沙淤积与扩散分析[J]. 人民黄河, 2020, 42(9): 41−45, 111.

    Shi Changxing. Sediment accumulation and dispersal in the Yellow River Mouth since 1976[J]. Yellow River, 2020, 42(9): 41−45, 111.
    [2]
    赵冬冬, 成海燕, 林凡生, 等. 黄河三角洲海底滑坡诱发条件——以埕岛海区为例[J]. 海洋地质前沿, 2020, 36(7): 25−30.

    Zhao Dongdong, Cheng Haiyan, Lin Fansheng, et al. Triggering factors of submarine landslide in the Yellow River Delta: take the Chengdao area as an example[J]. Marine Geology Frontiers, 2020, 36(7): 25−30.
    [3]
    冷浩, 胡瑞庚, 刘红军, 等. 波流作用下黄河三角洲硬壳层液化渗流形成机制研究[J]. 工程地质学报, 2021, 29(6): 1779−1787.

    Leng Hao, Hu Ruigeng, Liu Hongjun, et al. Mechanism of liquefaction seepage of upper seabed layer in the Yellow River Delta under wave-current via numerical simulation[J]. Journal of Engineering Geology, 2021, 29(6): 1779−1787.
    [4]
    刘志钦, 任宇鹏, 许国辉. 海底塌陷凹坑、扰动地层及再悬浮沉积物的波致土体液化成因探讨[J]. 海洋科学进展, 2021, 39(4): 548−556.

    Liu Zhiqin, Ren Yupeng, Xu Guohui. Discussion on the origin of wave-induced liquefaction in collapse depression, disturbed stratum, re-suspended sediment[J]. Advances in Marine Science, 2021, 39(4): 548−556.
    [5]
    孙永福, 董立峰, 宋玉鹏. 黄河水下三角洲粉质土扰动土层特征及成因探析[J]. 岩土力学, 2008, 29(6): 1494−1499.

    Sun Yongfu, Dong Lifeng, Song Yupeng. Analysis of characteristics and formation of disturbed soil on subaqueous delta of Yellow River[J]. Rock and Soil Mechanics, 2008, 29(6): 1494−1499.
    [6]
    常方强, 贾永刚. 波浪作用下埕岛海域粉质土海床的累积液化[J]. 华侨大学学报(自然科学版), 2013, 34(4): 434−438.

    Chang Fangqiang, Jia Yonggang. Residual liquefaction of silt seabed induced by wave at the Chengdao sea area[J]. Journal of Huaqiao University (Nature Science), 2013, 34(4): 434−438.
    [7]
    李凤业, 高抒, 贾建军, 等. 黄、渤海泥质沉积区现代沉积速率[J]. 海洋与湖沼, 2002, 33(4): 364−369.

    Li Fengye, Gao Shu, Jia Jianjun, et al. Contemporary deposition rates of fine-grained sediment in the Bohai and Yellow seas[J]. Oceanologia et Limnologia Sinica, 2002, 33(4): 364−369.
    [8]
    宋莎莎, 孙永福, 宋玉鹏, 等. 黄河口水下三角洲刁口叶瓣的核素分布与沉积特征[J]. 海洋地质与第四纪地质, 2020, 40(3): 43−50.

    Song Shasha, Sun Yongfu, Song Yupeng, et al. Nuclides distribution and sedimentary characteristics of the Diaokou course in Yellow River subaqueous delta[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 43−50.
    [9]
    任寒寒. 黄河三角洲高分辨沉积记录及其对河道变迁和重大人类活动的响应[D]. 青岛: 中国海洋大学, 2014.

    Ren Hanhan. High-resolution sedimentary records in the Yellow River Delta and their responses to the mouth migration and human activities[D]. Qingdao: Ocean University of China, 2014.
    [10]
    王晓慧, 吴伊婧, 范代读. 福建兴化湾外近海210Pb法沉积速率及校正方法[J]. 古地理学报, 2019, 21(3): 527−536.

    Wang Xiaohui, Wu Yijing, Fan Daidu. 210Pb derived sedimentation rates in offshore area of the Xinghua Bay, Fujian Province, and proposed calibration method[J]. Journal of Palaeogeography, 2019, 21(3): 527−536.
    [11]
    任寒寒, 范德江, 张喜林, 等. 黄河入海口变迁的沉积记录: 来自粒度和210Pb的证据[J]. 海洋地质与第四纪地质, 2014, 34(4): 21−29.

    Ren Hanhan, Fan Dejiang, Zhang Xilin, et al. Sedimentary records of the Yellow River Mouth migration: evidence from grain-size and 210Pb[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 21−29.
    [12]
    李燕妮, 李鹏, 吴晓, 等. 黄河口湿地时空变化过程及其主控因素[J]. 海洋地质与第四纪地质, 2022, 42(1): 68−80.

    Li Yanni, Li Peng, Wu Xiao, et al. Tempo-spatial variation of wetlands at the Yellow River Mouth and its control factors[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 68−80.
    [13]
    吴晓, 范勇勇, 王厚杰, 等. 三角洲废弃河道演化过程及受控机制——以黄河刁口废弃河道为例[J]. 海洋地质与第四纪地质, 2021, 41(2): 22−29.

    Wu Xiao, Fan Yongyong, Wang Houjie, et al. Evolution of abandoned deltaic river channel—A case from the Diaokou channel of the Yellow River[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 22−29.
    [14]
    王晓磊. 黄河三角洲埕北典型海域工程地质环境及粒度指示性分析[D]. 青岛: 中国海洋大学, 2014.

    Wang Xiaolei. The analysis of engineering geological environment and particle size indication in the northern Chengdao sea area of Yellow River Delta[D]. Qingdao: Ocean University of China, 2014.
    [15]
    韩沙沙, 谈广鸣, 赵连军, 等. 黄河入海水沙情势变化分析[J]. 中国农村水利水电, 2022(2): 1−5, 19.

    Han Shasha, Tan Guangming, Zhao Lianjun, et al. An analysis of the latest variations of incoming water and sediment in the Yellow River Delta[J]. China Rural Water and Hydropower, 2022(2): 1−5, 19.
    [16]
    林聪泳, 陈沈良, 李鹏, 等. 黄河三角洲北部近岸悬浮物季节性分布及驱动因素[J]. 海洋学报, 2021, 43(12): 152−160.

    Lin Congyong, Chen Shenliang, Li Peng, et al. Seasonal distribution and driving forces of suspended particulate matter in the northern Yellow River Delta[J]. Haiyang Xuebao, 2021, 43(12): 152−160.
    [17]
    Xie Weiming, Wang Xianye, Guo Leicheng, et al. Impacts of a storm on the erosion process of a tidal wetland in the Yellow River Delta[J]. CATENA, 2021, 205: 105461. doi: 10.1016/j.catena.2021.105461
    [18]
    Zhang Shaotong, Jia Yonggang, Zhang Yaqi, et al. In situ observations of wave pumping of sediments in the Yellow River Delta with a newly developed benthic chamber[J]. Marine Geophysical Research, 2018, 39(4): 463−474. doi: 10.1007/s11001-018-9344-9
    [19]
    田动会, 滕珊, 冯秀丽, 等. 黄河三角洲埕北海域底质沉积物粒度特征及泥沙输运分析[J]. 海洋学报, 2017, 39(3): 106−114.

    Tian Donghui, Teng Shan, Feng Xiuli, et al. Grain-size pattern of surface sediment and analysis of sediment transport in the Chengbei area of the Yellow River Delta[J]. Haiyang Xuebao, 2017, 39(3): 106−114.
    [20]
    房虹汝. 波浪作用下黄河口粉质土海床液化深度研究[D]. 青岛: 中国海洋大学, 2015.

    Fang Hongru. Study on the thickness of wave-induced liquefaction of submarion silty-bed in Yellow River Delta[D]. Qingdao: Ocean University of China, 2015.
    [21]
    Sun Xueshi, Fan Dejiang, Tian Yuan, et al. Normalization of excess 210Pb with grain size in the sediment cores from the Yangtze River Estuary and adjacent areas: implications for sedimentary processes[J]. The Holocene, 2017, 28(4): 545−557.
    [22]
    Lu Xueqiang, Matsumoto E. Implications of excess 210Pb and 137Cs in sediment cores from Mikawa Bay, Japan[J]. Journal of Environmental Sciences, 2009, 21(5): 707−712. doi: 10.1016/S1001-0742(08)62328-1
    [23]
    Humphries M S, Kindness A, Ellery W N, et al. 137Cs and 210Pb derived sediment accumulation rates and their role in the long-term development of the Mkuze River floodplain, South Africa[J]. Geomorphology, 2010, 119(1/2): 88−96.
    [24]
    Zhou Liangyong, Liu Jian, Saito Y, et al. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe)[J]. Geo-Marine Letters, 2016, 36(4): 247−258. doi: 10.1007/s00367-016-0442-x
    [25]
    Song Shasha, Santos I R, Yu Huaming, et al. A global assessment of the mixed layer in coastal sediments and implications for carbon storage[J]. Nature Communications, 2022, 13(1): 4903. doi: 10.1038/s41467-022-32650-0
    [26]
    文明征, 王振豪, 张博文, 等. 黄河水下三角洲浮泥层分布与扰动地层调查研究[J]. 工程地质学报, 2018, 26(S1): 677−683.

    Wen Mingzheng, Wang Zhenhao, Zhang Bowen, et al. Survey on the distribution of fluid mud and disturbed strata on subaqueous Yellow River Delta[J]. Journal of Engineering Geology, 2018, 26(S1): 677−683.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (220) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return