Citation: | Zhang Rongcheng,Zhang Xiaotian,Cao Haobing, et al. Interaction between marginal salt marsh patches and tidal channel evolution on tidal flats[J]. Haiyang Xuebao,2023, 45(4):109–120 doi: 10.12284/hyxb2023073 |
[1] |
Amos C L. Chapter 10 siliciclastic tidal flats[J]. Developments in Sedimentology, 1995, 53: 273−306.
|
[2] |
Friedrichs C T. Tidal flat morphodynamics: a synthesis[J]. Treatise on Estuarine and Coastal Science, 2011, 3: 137−170.
|
[3] |
时钟, Pye K, 陈吉余. 潮滩盐沼物理过程的研究进展综述[J]. 地球科学进展, 1995, 10(1): 19−30.
Shi Zhong, Pye K, Chen Jiyu. Progress in physical processes on mudflat saltmarsh: an overview[J]. Advance in Earth Sciences, 1995, 10(1): 19−30.
|
[4] |
Temmerman S, Meire P, Bouma T J, et al. Ecosystem-based coastal defence in the face of global change[J]. Nature, 2013, 504(7478): 79−83. doi: 10.1038/nature12859
|
[5] |
Leonardi N, Carnacina I, Donatelli C, et al. Dynamic interactions between coastal storms and salt marshes: a review[J]. Geomorphology, 2018, 301: 92−107. doi: 10.1016/j.geomorph.2017.11.001
|
[6] |
Leonard L A, Luther M E. Flow hydrodynamics in tidal marsh canopies[J]. Limnology and Oceanography, 1995, 40(8): 1474−1484. doi: 10.4319/lo.1995.40.8.1474
|
[7] |
周曾, 陈雷, 林伟波, 等. 盐沼潮滩生物动力地貌演变研究进展[J]. 水科学进展, 2021, 32(3): 470−484.
Zhou Zeng, Chen Lei, Lin Weibo, et al. Advances in biogeomorphology of tidal flat-saltmarsh systems[J]. Advances in Water Science, 2021, 32(3): 470−484.
|
[8] |
时钟, 杨世伦, 缪莘. 海岸盐沼泥沙过程现场实验研究[J]. 泥沙研究, 1998(4): 30−37.
Shi Zhong, Yang Shilun, Miao Xin. Coastal saltmarsh sediment processes: a field experimental study[J]. Journal of Sediment Research, 1998(4): 30−37.
|
[9] |
高抒, 杜永芬, 谢文静, 等. 苏沪浙闽海岸互花米草盐沼的环境−生态动力过程研究进展[J]. 中国科学: 地球科学, 2014, 57(11): 2567−2586. doi: 10.1007/s11430-014-4954-9
Gao Shu, Du Yongfen, Xie Wenjing, et al. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines[J]. Science China Earth Sciences, 2014, 57(11): 2567−2586. doi: 10.1007/s11430-014-4954-9
|
[10] |
杨世伦, 时钟, 赵庆英. 长江口潮沼植物对动力沉积过程的影响[J]. 海洋学报, 2001, 23(4): 75−80.
Yang Shilun, Shi Zhong, Zhao Qingying. Influence of tidal marsh vegetations on hydrodynamics and sedimentation in the Changjiang Estuary[J]. Haiyang Xuebao, 2001, 23(4): 75−80.
|
[11] |
Leonard L A, Croft A L. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies[J]. Estuarine, Coastal and Shelf Science, 2006, 69(3/4): 325−336.
|
[12] |
Shi J Z, Hamilton L J, Wolanski E. Near-bed currents and suspended sediment transport in saltmarsh canopies[J]. Journal of Coastal Research, 2000, 16(3): 909−914.
|
[13] |
Evans B R, Möller I, Spencer T, et al. Dynamics of salt marsh margins are related to their three-dimensional functional form[J]. Earth Surface Processes and Landforms, 2019, 44(9): 1816−1827.
|
[14] |
Allen J R L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12): 1155−1231. doi: 10.1016/S0277-3791(99)00034-7
|
[15] |
吴德力, 沈永明, 方仁建. 江苏中部海岸潮沟的形态变化特征[J]. 地理学报, 2013, 68(7): 955−965.
Wu Deli, Shen Yongming, Fang Renjian. A morphological analysis of tidal creek network patterns on the central Jiangsu coast[J]. Acta Geographica Sinica, 2013, 68(7): 955−965.
|
[16] |
沈永明, 张忍顺, 王艳红. 互花米草盐沼潮沟地貌特征[J]. 地理研究, 2003, 22(4): 520−527. doi: 10.3321/j.issn:1000-0585.2003.04.014
Shen Yongming, Zhang Renshun, Wang Yanhong. The tidal creek character in salt marsh of Spartina alterniflora loisel on strong tide coast[J]. Geographical Research, 2003, 22(4): 520−527. doi: 10.3321/j.issn:1000-0585.2003.04.014
|
[17] |
De Vaate I B, Brückner M Z M, Kleinhans M G, et al. On the impact of salt marsh pioneer species-assemblages on the emergence of intertidal channel networks[J]. Water Resources Research, 2020, 56(3): e2019WR025942.
|
[18] |
Schwarz C, Ye Qinghua, Van Der Wal D, et al. Impacts of salt marsh plants on tidal channel initiation and inheritance[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(2): 385−400. doi: 10.1002/2013JF002900
|
[19] |
郑宗生, 周云轩, 田波, 等. 植被对潮沟发育影响的遥感研究——以崇明东滩为例[J]. 国土资源遥感, 2014, 26(3): 117−124.
Zheng Zongsheng, Zhou Yunxuan, Tian Bo, et al. Effects of vegetation on the dynamic of tidal creeks based on quantitative satellite remote sensing: a case study of Dongtan in Chongming[J]. Remote Sensing for Land & Resources, 2014, 26(3): 117−124.
|
[20] |
刘露雨, 屈凡柱, 栗云召, 等. 黄河三角洲滨海湿地潮沟分布与植被覆盖度的关系[J]. 生态学杂志, 2020, 39(6): 1830−1837.
Liu Luyu, Qu Fanzhu, Li Yunzhao, et al. Correlation between creek tidal distribution and vegetation coverage in the Yellow River Delta coastal wetland[J]. Chinese Journal of Ecology, 2020, 39(6): 1830−1837.
|
[21] |
Temmerman S, Bouma T J, Van De Koppel J, et al. Vegetation causes channel erosion in a tidal landscape[J]. Geology, 2007, 35(7): 631−634. doi: 10.1130/G23502A.1
|
[22] |
Dai Weiqi, Li Huan, Zhou Zeng, et al. UAV photogrammetry for elevation monitoring of intertidal mudflats[J]. Journal of Coastal Research, 2018, 85(10085): 236−240.
|
[23] |
戴玮琦, 李欢, 龚政, 等. 无人机技术在潮滩地貌演变研究中的应用[J]. 水科学进展, 2019, 30(3): 359−372.
Dai Weiqi, Li Huan, Gong Zheng, et al. Application of unmanned aerial vehicle technology in geomorphological evolution of tidal flat[J]. Advances in Water Science, 2019, 30(3): 359−372.
|
[24] |
Dai Weiqi, Li Huan, Chen Xindi, et al. Saltmarsh expansion in response to morphodynamic evolution: field observations in the Jiangsu coast using UAV[J]. Journal of Coastal Research, 2020, 95(S1): 433−437. doi: 10.2112/SI95-084.1
|
[25] |
Symonds A M, Collins M B. The establishment and degeneration of a temporary creek system in response to managed coastal realignment: the Wash, UK[J]. Earth Surface Processes and Landforms, 2007, 32(12): 1783−1796. doi: 10.1002/esp.1495
|
[26] |
尹延鸿. 潮沟研究现状及进展[J]. 海洋地质动态, 1997(7): 1−4.
Yin Yanhong. Status quo and progress in tidal channel[J]. Marine Geology Letters, 1997(7): 1−4.
|
[27] |
侯明行, 刘红玉, 张华兵. 盐城淤泥质潮滩湿地潮沟发育及其对米草扩张的影响[J]. 生态学报, 2014, 34(2): 400−409.
Hou Mingxing, Liu Hongyu, Zhang Huabing. Effection of tidal creek system on the expansion of the invasive Spartina in the coastal wetland of Yancheng[J]. Acta Ecologica Sinica, 2014, 34(2): 400−409.
|
[28] |
崔保山, 蔡燕子, 谢湉, 等. 湿地水文连通的生态效应研究进展及发展趋势[J]. 北京师范大学学报(自然科学版), 2016, 52(6): 738−746.
Cui Baoshan, Cai Yanzi, Xie Tian, et al. Ecological effects of wetland hydrological connectivity: problems and prospects[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(6): 738−746.
|
[29] |
Leal L C, Andersen A N, Leal I R. Anthropogenic disturbance reduces seed-dispersal services for myrmecochorous plants in the Brazilian Caatinga[J]. Oecologia, 2014, 174(1): 173−181. doi: 10.1007/s00442-013-2740-6
|
[30] |
Moffett K B, Gorelick S M. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences[J]. Water Resources Research, 2016, 52(3): 1729−1745. doi: 10.1002/2015WR017406
|
[31] |
王青, 骆梦, 邱冬冬, 等. 滨海盐沼水文特征对盐地碱蓬定植过程的影响[J]. 自然资源学报, 2019, 34(12): 2569−2579. doi: 10.31497/zrzyxb.20191207
Wang Qing, Luo Meng, Qiu Dongdong, et al. Effect of hydrological characteristics on the recruitment of Suaeda salsa in coastal salt marshes[J]. Journal of Natural Resources, 2019, 34(12): 2569−2579. doi: 10.31497/zrzyxb.20191207
|
[32] |
Best Ü S N, van der Wegen M, Dijkstra J, et al. Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics[J]. Environmental Modelling & Software, 2018, 109: 152−166.
|
[33] |
Mariotti G. Beyond marsh drowning: the many faces of marsh loss (and gain)[J]. Advances in Water Resources, 2020, 144: 103710. doi: 10.1016/j.advwatres.2020.103710
|
[34] |
Mariotti G, Murshid S. A 2D tide-averaged model for the long-term evolution of an idealized tidal basin-inlet-delta system[J]. Journal of Marine Science and Engineering, 2018, 6(4): 154. doi: 10.3390/jmse6040154
|
[35] |
Mariotti G. Revisiting salt marsh resilience to sea level rise: are ponds responsible for permanent land loss?[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(7): 1391−1407. doi: 10.1002/2016JF003900
|
[36] |
Mariotti G. Marsh channel morphological response to sea level rise and sediment supply[J]. Estuarine, Coastal and Shelf Science, 2018, 209: 89−101. doi: 10.1016/j.ecss.2018.05.016
|
[37] |
Rinaldo A, Fagherazzi S, Lanzoni S, et al. Tidal networks: 3. Landscape-forming discharges and studies in empirical geomorphic relationships[J]. Water Resources Research, 1999, 35(12): 3919−3929. doi: 10.1029/1999WR900238
|
[38] |
Di Silvio G, Dall’Angelo C, Bonaldo D, et al. Long-term model of planimetric and bathymetric evolution of a tidal lagoon[J]. Continental Shelf Research, 2010, 30(8): 894−903. doi: 10.1016/j.csr.2009.09.010
|
[39] |
Arons A B, Stommel H. A mixing-length theory of tidal flushing[J]. EOS, Transactions American Geophysical Union, 1951, 32(3): 419−421. doi: 10.1029/TR032i003p00419
|
[40] |
Monden M. Modeling the interaction between morphodynamics and vegetation in the Nisqually River Estuary, 2010[D]. Delft, Netherlands: Delft University of Technology, 2010.
|
[41] |
Carr J, Mariotti G, Fahgerazzi S, et al. Exploring the impacts of seagrass on coupled marsh-tidal flat morphodynamics[J]. Frontiers in Environmental Science, 2018, 6: 92. doi: 10.3389/fenvs.2018.00092
|
[42] |
张长宽, 黄婷婷, 陶建峰, 等. 江苏海岸潮滩剖面形态与动力泥沙响应关系[J]. 河海大学学报(自然科学版), 2020, 48(3): 245−251.
Zhang Changkuan, Huang Tingting, Tao Jianfeng, et al. Response relationship of tidal flat profile and dynamic sediment along Jiangsu coast[J]. Journal of Hohai University (Natural Sciences), 2020, 48(3): 245−251.
|
[43] |
Balke T, Bouma T J, Horstman E M, et al. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats[J]. Marine Ecology Progress Series, 2011, 440: 1−9. doi: 10.3354/meps09364
|
[44] |
Hu Zhongjian, Ge Zhenming, Ma Qiang, et al. Revegetation of a native species in a newly formed tidal marsh under varying hydrological conditions and planting densities in the Yangtze Estuary[J]. Ecological Engineering, 2015, 83: 354−363. doi: 10.1016/j.ecoleng.2015.07.005
|
[45] |
Poppema D W, Willemsen P W J M, De Vries M B, et al. Experiment-supported modelling of salt marsh establishment[J]. Ocean & Coastal Management, 2019, 168: 238−250.
|
[46] |
Hu Z, Van Belzen J, Van Der Wal D, et al. Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: the importance of temporal and spatial variability in hydrodynamic forcing[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(7): 1450−1469. doi: 10.1002/2014JG002870
|
[47] |
张晓祥, 王伟玮, 严长清, 等. 南宋以来江苏海岸带历史海岸线时空演变研究[J]. 地理科学, 2014, 34(3): 344−351.
Zhang Xiaoxiang, Wang Weiwei, Yan Changqing, et al. Historical coastline spatio-temporal evolution analysis in Jiangsu coastal area during the past 1 000 years[J]. Scientia Geographica Sinica, 2014, 34(3): 344−351.
|
[48] |
王文昊, 高抒, 徐杨佩云, 等. 江苏中部海岸潮滩沉积速率特征值的数值实验分析[J]. 南京大学学报(自然科学), 2014, 50(5): 656−665.
Wang Wenhao, Gao Shu, Xu Yangpeiyun, et al. Numerical experiments for the characteristic deposition rates over the tidal flat, central Jiangsu coast[J]. Journal of Nanjing University (Natural Sciences), 2014, 50(5): 656−665.
|
[49] |
丁海燕. 盐城海岸线30年变迁及海岸带可持续发展路径[J]. 盐城师范学院学报(人文社会科学版), 2021, 41(4): 11−20.
Ding Haiyan. Coastline change in the past 30 years and sustainable development path of coastal zone in Yancheng[J]. Journal of Yancheng Teachers University (Humanities & Social Sciences Edition), 2021, 41(4): 11−20.
|
[50] |
Fagherazzi S, Kirwan M L, Mudd S M, et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors[J]. Reviews of Geophysics, 2012, 50(1): RG1002.
|
[51] |
Fagherazzi S, Sun Tao. A stochastic model for the formation of channel networks in tidal marshes[J]. Geophysical Research Letters, 2004, 31(21): L21503.
|
[52] |
Marani M, Belluco E, Ferrari S, et al. Analysis, synthesis and modelling of high-resolution observations of salt-marsh eco-geomorphological patterns in the Venice lagoon[J]. Estuarine, Coastal and Shelf Science, 2006, 69(3/4): 414−426.
|
[53] |
Geng Liang, Gong Zheng, Lanzoni S, et al. A new method for automatic definition of tidal creek networks[J]. Journal of Coastal Research, 2018, 85(S1): 156−160.
|
[54] |
Silvestri S, Defina A, Marani M. Tidal regime, salinity and salt marsh plant zonation[J]. Estuarine, Coastal and Shelf Science, 2005, 62(1/2): 119−130.
|
[55] |
Coco G, Zhou Zeng, Van Maanen B, et al. Morphodynamics of tidal networks: advances and challenges[J]. Marine Geology, 2013, 346: 1−16. doi: 10.1016/j.margeo.2013.08.005
|
[56] |
Wang Chen, Temmerman S. Does biogeomorphic feedback lead to abrupt shifts between alternative landscape states?: An empirical study on intertidal flats and marshes[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(1): 229−240. doi: 10.1029/2012JF002474
|
[57] |
Taramelli A, Valentini E, Cornacchia L, et al. Indications of dynamic effects on scaling relationships between channel sinuosity and vegetation patch size across a salt marsh platform[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(10): 2714−2731. doi: 10.1029/2017JF004540
|