Citation: | Cui Bin’ge,Yang Guang,Fang Xi, et al. Red tide detection using GF-1 WFV image based on deep learning method[J]. Haiyang Xuebao,2023, 45(7):147–157 doi: 10.12284/hyxb2023070 |
[1] |
伍玉梅, 王芮, 程田飞, 等. 基于卫星遥感的赤潮信息提取研究进展[J]. 渔业信息与战略, 2019, 34(3): 214−220. doi: 10.13233/j.cnki.fishis.2019.03.009
Wu Yumei, Wang Rui, Cheng Tianfei, et al. Progress in retrieval of red tide from satellite data[J]. Fishery Information & Strategy, 2019, 34(3): 214−220. doi: 10.13233/j.cnki.fishis.2019.03.009
|
[2] |
翟伟康, 许自舟, 张健. 河北省近岸海域赤潮灾害特征分析[J]. 海洋环境科学, 2016, 35(2): 243−246, 251. doi: 10.13634/j.cnki.mes.2016.02.015
Zhai Weikang, Xu Zizhou, Zhang Jian. Analysis on characteristics of red tide disaster in Hebei coastal waters[J]. Marine Environmental Science, 2016, 35(2): 243−246, 251. doi: 10.13634/j.cnki.mes.2016.02.015
|
[3] |
姜德娟, 王昆, 夏云. 渤海赤潮遥感监测方法比较研究[J]. 海洋环境科学, 2020, 39(3): 460−467. doi: 10.12111/j.mes20200321
Jiang Dejuan, Wang Kun, Xia Yun. Comparative studies on remote sensing techniques for red tide monitoring in Bohai Sea[J]. Marine Environmental Science, 2020, 39(3): 460−467. doi: 10.12111/j.mes20200321
|
[4] |
郝艳玲, 曹文熙, 崔廷伟, 等. 基于半分析算法的赤潮水体固有光学性质反演[J]. 海洋学报, 2011, 33(1): 52−65.
Hao Yanling, Cao Wenxi, Cui Tingwei, et al. The retrieval of oceanic inherent optical properties based on semianalytical algorithm during the red ride[J]. Haiyang Xuebao, 2011, 33(1): 52−65.
|
[5] |
毛显谋, 黄韦艮. 多波段卫星遥感海洋赤潮水华的方法研究[J]. 应用生态学报, 2003, 14(7): 1200−1202. doi: 10.3321/j.issn:1001-9332.2003.07.037
Mao Xianmou, Huang Weigen. Algorithms of multiband remote sensing for coastal red tide waters[J]. Chinese Journal of Applied Ecology, 2003, 14(7): 1200−1202. doi: 10.3321/j.issn:1001-9332.2003.07.037
|
[6] |
王其茂, 马超飞, 唐军武, 等. EOS/MODIS遥感资料探测海洋赤潮信息方法[J]. 遥感技术与应用, 2006, 21(1): 6−10. doi: 10.3969/j.issn.1004-0323.2006.01.002
Wang Qimao, Ma Chaofei, Tang Junwu, et al. A method for detecting red tide information using EOS/MODIS data[J]. Remote Sensing Technology and Application, 2006, 21(1): 6−10. doi: 10.3969/j.issn.1004-0323.2006.01.002
|
[7] |
Ahn Y H, Shanmugam P. Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters[J]. Remote Sensing of Environment, 2006, 103(4): 419−437. doi: 10.1016/j.rse.2006.04.007
|
[8] |
Caballero I, Fernández R, Escalante O M, et al. New capabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small harmful algal blooms in complex coastal waters[J]. Scientific Reports, 2020, 10(1): 8743. doi: 10.1038/s41598-020-65600-1
|
[9] |
Khalili M H, Hasanlou M. Harmful algal blooms monitoring using SENTINEL-2 satellite images[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Karaj, Iran: ISPRS, 2019: 609−613.
|
[10] |
Xing Qianguo, Guo Ruihong, Wu Lingling, et al. High-resolution satellite observations of a new hazard of golden tides caused by floating sargassum in winter in the Yellow Sea[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1815−1819. doi: 10.1109/LGRS.2017.2737079
|
[11] |
Yunus A P, Dou Jie, Sravanthi N. Remote sensing of chlorophyll-a as a measure of red tide in Tokyo Bay using hotspot analysis[J]. Remote Sensing Applications: Society and Environment, 2015, 2: 11−25. doi: 10.1016/j.rsase.2015.09.002
|
[12] |
Rahman A F, Aslan A. Detecting red tide using spectral shapes[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE, 2016: 5856−5859.
|
[13] |
Liu Rongjie, Zhang Jie, Cui Binge, et al. Red tide detection based on high spatial resolution broad band satellite data: a case study of GF-1[J]. Journal of Coastal Research, 2019, 90(SI): 120−128.
|
[14] |
Liu Rongjie, Xiao Yanfang, Ma Yi, et al. Red tide detection based on high spatial resolution broad band optical satellite data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 131−147. doi: 10.1016/j.isprsjprs.2021.12.009
|
[15] |
刘岳明, 杨晓梅, 王志华, 等. 基于深度学习RCF模型的三都澳筏式养殖区提取研究[J]. 海洋学报, 2019, 41(4): 119−130.
Liu Yueming, Yang Xiaomei, Wang Zhihua, et al. Extracting raft aquaculture areas in Sanduao from high-resolution remote sensing images using RCF[J]. Haiyang Xuebao, 2019, 41(4): 119−130.
|
[16] |
崔艳荣, 邹斌, 韩震, 等. 卷积神经网络在卫星遥感海冰图像分类中的应用探究——以渤海海冰为例[J]. 海洋学报, 2020, 42(9): 100−109.
Cui Yanrong, Zou Bin, Han Zhen, et al. Application of convolutional neural networks in satellite remote sensing sea ice image classification: a case study of sea ice in the Bohai Sea[J]. Haiyang Xuebao, 2020, 42(9): 100−109.
|
[17] |
徐知宇, 周艺, 王世新, 等. 面向GF-2遥感影像的U-Net城市绿地分类[J]. 中国图象图形学报, 2021, 26(3): 700−713. doi: 10.11834/jig.200052
Xu Zhiyu, Zhou Yi, Wang Shixin, et al. U-Net for urban green space classification in Gaofen-2 remote sensing images[J]. Journal of Image and Graphics, 2021, 26(3): 700−713. doi: 10.11834/jig.200052
|
[18] |
姜宗辰, 马毅, 江涛, 等. 基于深度置信网络(DBN)的赤潮高光谱遥感提取研究[J]. 海洋技术学报, 2019, 38(2): 1−7.
Jiang Zongchen, Ma Yi, Jiang Tao, et al. Research on the extraction of red tide hyperspectral remote sensing based on the deep belief network (DBN)[J]. Journal of Ocean Technology, 2019, 38(2): 1−7.
|
[19] |
李敬虎, 邢前国, 郑向阳, 等. 基于深度学习的无人机影像夜光藻赤潮提取方法[J]. 计算机应用, 2022, 42(9): 2969−2974.
Li Jinghu, Xing Qianguo, Zheng Xiangyang, et al. Noctiluca scintillans red tide extraction method from UAV images based on deep learning[J]. Journal of Computer Applications, 2022, 42(9): 2969−2974.
|
[20] |
Lee H, Kwon H, Kim W. Generating hard examples for pixel-wise classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9504−9517. doi: 10.1109/JSTARS.2021.3112924
|
[21] |
Zhao Xin, Liu Rongjie, Ma Yi, et al. Red tide detection method for HY-1D coastal zone imager based on U-net convolutional neural network[J]. Remote Sensing, 2022, 14(1): 88.
|
[22] |
刘锟, 付晶莹, 李飞. 高分一号卫星4种融合方法评价[J]. 遥感技术与应用, 2015, 30(5): 980−986.
Liu Kun, Fu Jingying, Li Fei. Evaluation study of four fusion methods of GF-1 PAN and multi-spectral images[J]. Remote Sensing Technology and Application, 2015, 30(5): 980−986.
|
[23] |
王蕊, 王常颖, 李劲华. 基于数据挖掘的GF-1遥感影像绿潮自适应阈值分区智能检测方法研究[J]. 海洋学报, 2019, 41(4): 131−144.
Wang Rui, Wang Changying, Li Jinhua. An intelligent divisional green tide detection of adaptive threshold for GF-1 image based on data mining[J]. Haiyang Xuebao, 2019, 41(4): 131−144.
|
[24] |
张海龙, 孙德勇, 李俊生, 等. 基于GF1-WFV和HJ-CCD数据的我国近海绿潮遥感监测算法研究[J]. 光学学报, 2016, 36(6): 0601004. doi: 10.3788/AOS201636.0601004
Zhang Hailong, Sun Deyong, Li Junsheng, et al. Remote sensing algorithm for detecting green tide in China coastal waters based on GF1-WFV and HJ-CCD data[J]. Acta Optica Sinica, 2016, 36(6): 0601004. doi: 10.3788/AOS201636.0601004
|
[25] |
程益锋, 黄文骞, 吴迪, 等. 基于高分一号卫星影像的珊瑚岛礁分类方法[J]. 海洋测绘, 2018, 38(6): 49−53. doi: 10.3969/j.issn.1671-3044.2018.06.012
Cheng Yifeng, Huang Wenqian, Wu Di, et al. Coral reefs classification methods based on GF-1 satellite image[J]. Hydrographic Surveying and Charting, 2018, 38(6): 49−53. doi: 10.3969/j.issn.1671-3044.2018.06.012
|
[26] |
邝辉宇, 吴俊君. 基于深度学习的图像语义分割技术研究综述[J]. 计算机工程与应用, 2019, 55(19): 12−21. doi: 10.3778/j.issn.1002-8331.1905-0325
Kuang Huiyu, Wu Junjun. Survey of image semantic segmentation based on deep learning[J]. Computer Engineering and Applications, 2019, 55(19): 12−21. doi: 10.3778/j.issn.1002-8331.1905-0325
|
[27] |
Li Hanchao, Xiong Pengfei, Fan Haoqiang, et al. DFANet: deep feature aggregation for real-time semantic segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9522−9531.
|
[28] |
Newell A, Yang Kaiyu, Deng Jia. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 483−499.
|
[29] |
Mao Xiaojiao, Shen Chunhua, Yang Yubin. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: Curran Associates Inc. , 2016: 2810−2818.
|
[30] |
Zhou Feng, Hu Yong, Shen Xukun. Scale-aware spatial pyramid pooling with both encoder-mask and scale-attention for semantic segmentation[J]. Neurocomputing, 2020, 383: 174−182. doi: 10.1016/j.neucom.2019.11.042
|
[31] |
Zhao Hengshuang, Shi Jianping, Qi Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2881−2890.
|
[32] |
Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132−7141.
|
[33] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234−241.
|
[34] |
Chen L C, Zhu Yukun, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 833−851.
|
[35] |
Rouse J W Jr, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[R]. College Station, TX, United States: NASA, 1974.
|