Citation: | Ji Qiaoling,Chen Guoqiang. Comparison of hydrodynamic performance of two types of wave energy converter-floating breakwater[J]. Haiyang Xuebao,2023, 45(6):122–133 doi: 10.12284/hyxb2023065 |
[1] |
刘延俊, 武爽, 王登帅, 等. 海洋波浪能发电装置研究进展[J]. 山东大学学报(工学版), 2021, 51(5): 63−75.
Liu Yanjun, Wu Shuang, Wang Dengshuai, et al. Research progress of ocean wave energy converters[J]. Journal of Shandong University (Engineering Science), 2021, 51(5): 63−75.
|
[2] |
谢典, 顾煜炯, 余志文, 等. 波浪能发电装置的性能分析及综合评价[J]. 水力发电学报, 2017, 36(8): 113−120.
Xie Dian, Gu Yujiong, Yu Zhiwen, et al. Performance analysis and comprehensive evaluation of wave energy power generation devices[J]. Journal of Hydroelectric Engineering, 2017, 36(8): 113−120.
|
[3] |
孙科, 解光慈, 周斌珍. 波能装置浮子选型及水动力性能分析[J]. 哈尔滨工程大学学报, 2021, 42(1): 8−14. doi: 10.11990/jheu.201908011
Sun Ke, Xie Guangci, Zhou Binzhen. Type selection and hydrodynamic performance analysis of wave energy converters[J]. Journal of Harbin Engineering University, 2021, 42(1): 8−14. doi: 10.11990/jheu.201908011
|
[4] |
Ning Dezhi, Zhao Xuanlie, Göteman M, et al. Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study[J]. Renewable Energy, 2016, 95: 531−541. doi: 10.1016/j.renene.2016.04.057
|
[5] |
Zhao Xuanlie, Ning Dezhi. Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons[J]. Energy, 2018, 155: 226−233. doi: 10.1016/j.energy.2018.04.189
|
[6] |
毛艳军, 马哲, 程勇, 等. 动力输出系统(PTO)对集成波能转换装置式防波堤消波性能及波能捕获率影响研究[J]. 海洋工程, 2019, 37(4): 45−53.
Mao Yanjun, Ma Zhe, Cheng Yong, et al. Effect of the PTO damping force on the wave damping performance and wave capture efficiency of a WEC-type breakwater[J]. Ocean Engineering, 2019, 37(4): 45−53.
|
[7] |
张恒铭. 波能装置与浮式防波堤集成系统的水动力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
Zhang Hengming. Study on hydrodynamic characteristics of integrated system of wave energy converter and floating breakwater[D]. Harbin: Harbin Engineering University, 2019.
|
[8] |
王世林, 于定勇, 谢雨嘉, 等. 方箱−垂直板浮式防波堤水动力特性研究[C]//海洋工程学会. 第十九届中国海洋(岸)工程学术讨论会论文集(上). 北京: 海洋出版社, 2019: 421-428.
Wang Shilin, Yu Dingyong, Xie Yujia, et al. Study on hydrodynamic characteristics of square box-vertical plate floating breakwater[C]//Chinese Society for Oceanography. Proceedings of the Nineteenth Chinese Symposium on Ocean (Coastal) Engineering (I). Beijing: China Ocean Press, 2019: 421−428.
|
[9] |
Ji Qiaoling, Xu Chenghao, Jiao Chunshuo. Numerical investigation on the hydrodynamic performance of a vertical pile-restrained reversed L type floating breakwater integrated with WEC[J]. Ocean Engineering, 2021, 238: 109635. doi: 10.1016/j.oceaneng.2021.109635
|
[10] |
刘崇期. 兼具波浪能提取功能的浮式防波堤性能研究[D]. 大连: 大连理工大学, 2015.
Liu Chongqi. Performance of floating breakwater double used as wave energy convertor[D]. Dalian: Dalian University of Technology, 2015.
|
[11] |
张亮, 国威, 王树齐. 一种点吸式波浪能装置水动力性能优化[J]. 哈尔滨工业大学学报, 2015, 47(7): 117−121.
Zhang Liang, Guo Wei, Wang Shuqi. Hydrodynamic performance optimization of a point absorber[J]. Journal of Harbin Institute of Technology, 2015, 47(7): 117−121.
|
[12] |
陈子和, 嵇春艳, 郭建廷, 等. 振荡浮子式波能发电浮堤一体化装置性能研究[J]. 船舶工程, 2021, 43(10): 22−30.
Chen Zihe, Ji Chunyan, Guo Jianting, et al. Performance investigation of an integrated device of oscillating buoy wave energy converter and Floating Breakwater[J]. Ship Engineering, 2021, 43(10): 22−30.
|
[13] |
Zhu Xinying. Application of the CIP method to strongly nonlinear wave-body interaction problems[D]. Trondheim: Norwegian University of Science and Technology, 2006.
|
[14] |
赵西增, 刘必劲, 梁书秀, 等. 紧致插值曲线CIP方法及其应用[J]. 船舶力学, 2016, 20(4): 393−402.
Zhao Xizeng, Liu Bijin, Liang Shuxiu, et al. Constrained Interpolation Profile (CIP) method and its application[J]. Journal of Ship Mechanics, 2016, 20(4): 393−402.
|
[15] |
Xu Sheng, Wang Z J. An immersed interface method for simulating the interaction of a fluid with moving boundaries[J]. Journal of Computational Physics, 2006, 216(2): 454−493. doi: 10.1016/j.jcp.2005.12.016
|
[16] |
Xiao F, Honma Y, Kono T. A simple algebraic interface capturing scheme using hyperbolic tangent function[J]. International Journal for Numerical Methods in Fluids, 2005, 48(9): 1023−1040. doi: 10.1002/fld.975
|
[17] |
Xu Jing, Wang Dongshi, Huang Hui, et al. A vortex-induced vibration model for the fatigue analysis of a marine drilling riser[J]. Ships and Offshore Structures, 2017, 12(S1): S280−S287.
|
[18] |
刘冲. 垂直导桩锚固方箱−水平板式浮防波堤试验研究[D]. 大连: 大连理工大学, 2008.
Liu Chong. Experimental study on pile-restrained pontoon-plates floating breakwater[D]. Dalian: Dalian University of Technology, 2008.
|
[19] |
Koutandos E, Prinos P, Gironella X. Floating breakwaters under regular and irregular wave forcing: reflection and transmission characteristics[J]. Journal of Hydraulic Research, 2005, 43(2): 174−188. doi: 10.1080/00221686.2005.9641234
|
[20] |
He Fang, Huang Zhenhua, Law A W K. An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction[J]. Applied Energy, 2013, 106: 222−231. doi: 10.1016/j.apenergy.2013.01.013
|