Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
Ji Qiaoling,Chen Guoqiang. Comparison of hydrodynamic performance of two types of wave energy converter-floating breakwater[J]. Haiyang Xuebao,2023, 45(6):122–133 doi: 10.12284/hyxb2023065
Citation: Ji Qiaoling,Chen Guoqiang. Comparison of hydrodynamic performance of two types of wave energy converter-floating breakwater[J]. Haiyang Xuebao,2023, 45(6):122–133 doi: 10.12284/hyxb2023065

Comparison of hydrodynamic performance of two types of wave energy converter-floating breakwater

doi: 10.12284/hyxb2023065
  • Received Date: 2022-08-02
  • Rev Recd Date: 2022-11-30
  • Available Online: 2023-06-27
  • Publish Date: 2023-06-30
  • The wave energy converter-type floating breakwater is an integrated device of floating breakwater and wave energy converter, with both functions of wave protection and wave energy capture. The integration can effectively reduce the cost of wave energy converter with one single function. Researchers have proposed a variety of structural types of this integrated device. Among them, the asymmetric type has some advantages in hydrodynamic performance compared with the symmetric type under one single direction wave. In this study, two structural types of a square box-triangle baffle and a square box-vertical baffle are chosen to investigate the hydrodynamic characteristics and wave energy capture characteristics by numerical models. Based on the viscous fluid theory, the numerical model takes the Navier-Stokes equation as the control equation, and uses VOF method and immersion boundary method to solve the free surface boundary and fluid-structure interaction. The variation trend of hydrodynamic performances (transmission coefficient, energy dissipation and energy capture ratio) of the integrated device under different conditions of incident wave period, water depth and displacement volume are explored. The results show that, for the near shore waves, the vertical baffle type integrated device is suitable for the smaller period waves of 5−6 s, while the triangular baffle type integrated device is suitable for the bigger period waves of 6−8 s. As the water depth increases, the wave energy capture ratio generally shows a slow growth trend. In the case of the same draft of the main floating body (different displacement volume), the transmission coefficients of the two structures are basically the same. In the case of the same displacement volume (different draft of the main floating body), the vertical baffle structure has better wave-proof effect, and the wave energy capture performance of the triangular baffle structure is better than that of the vertical baffle structure.
  • loading
  • [1]
    刘延俊, 武爽, 王登帅, 等. 海洋波浪能发电装置研究进展[J]. 山东大学学报(工学版), 2021, 51(5): 63−75.

    Liu Yanjun, Wu Shuang, Wang Dengshuai, et al. Research progress of ocean wave energy converters[J]. Journal of Shandong University (Engineering Science), 2021, 51(5): 63−75.
    [2]
    谢典, 顾煜炯, 余志文, 等. 波浪能发电装置的性能分析及综合评价[J]. 水力发电学报, 2017, 36(8): 113−120.

    Xie Dian, Gu Yujiong, Yu Zhiwen, et al. Performance analysis and comprehensive evaluation of wave energy power generation devices[J]. Journal of Hydroelectric Engineering, 2017, 36(8): 113−120.
    [3]
    孙科, 解光慈, 周斌珍. 波能装置浮子选型及水动力性能分析[J]. 哈尔滨工程大学学报, 2021, 42(1): 8−14. doi: 10.11990/jheu.201908011

    Sun Ke, Xie Guangci, Zhou Binzhen. Type selection and hydrodynamic performance analysis of wave energy converters[J]. Journal of Harbin Engineering University, 2021, 42(1): 8−14. doi: 10.11990/jheu.201908011
    [4]
    Ning Dezhi, Zhao Xuanlie, Göteman M, et al. Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study[J]. Renewable Energy, 2016, 95: 531−541. doi: 10.1016/j.renene.2016.04.057
    [5]
    Zhao Xuanlie, Ning Dezhi. Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons[J]. Energy, 2018, 155: 226−233. doi: 10.1016/j.energy.2018.04.189
    [6]
    毛艳军, 马哲, 程勇, 等. 动力输出系统(PTO)对集成波能转换装置式防波堤消波性能及波能捕获率影响研究[J]. 海洋工程, 2019, 37(4): 45−53.

    Mao Yanjun, Ma Zhe, Cheng Yong, et al. Effect of the PTO damping force on the wave damping performance and wave capture efficiency of a WEC-type breakwater[J]. Ocean Engineering, 2019, 37(4): 45−53.
    [7]
    张恒铭. 波能装置与浮式防波堤集成系统的水动力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    Zhang Hengming. Study on hydrodynamic characteristics of integrated system of wave energy converter and floating breakwater[D]. Harbin: Harbin Engineering University, 2019.
    [8]
    王世林, 于定勇, 谢雨嘉, 等. 方箱−垂直板浮式防波堤水动力特性研究[C]//海洋工程学会. 第十九届中国海洋(岸)工程学术讨论会论文集(上). 北京: 海洋出版社, 2019: 421-428.

    Wang Shilin, Yu Dingyong, Xie Yujia, et al. Study on hydrodynamic characteristics of square box-vertical plate floating breakwater[C]//Chinese Society for Oceanography. Proceedings of the Nineteenth Chinese Symposium on Ocean (Coastal) Engineering (I). Beijing: China Ocean Press, 2019: 421−428.
    [9]
    Ji Qiaoling, Xu Chenghao, Jiao Chunshuo. Numerical investigation on the hydrodynamic performance of a vertical pile-restrained reversed L type floating breakwater integrated with WEC[J]. Ocean Engineering, 2021, 238: 109635. doi: 10.1016/j.oceaneng.2021.109635
    [10]
    刘崇期. 兼具波浪能提取功能的浮式防波堤性能研究[D]. 大连: 大连理工大学, 2015.

    Liu Chongqi. Performance of floating breakwater double used as wave energy convertor[D]. Dalian: Dalian University of Technology, 2015.
    [11]
    张亮, 国威, 王树齐. 一种点吸式波浪能装置水动力性能优化[J]. 哈尔滨工业大学学报, 2015, 47(7): 117−121.

    Zhang Liang, Guo Wei, Wang Shuqi. Hydrodynamic performance optimization of a point absorber[J]. Journal of Harbin Institute of Technology, 2015, 47(7): 117−121.
    [12]
    陈子和, 嵇春艳, 郭建廷, 等. 振荡浮子式波能发电浮堤一体化装置性能研究[J]. 船舶工程, 2021, 43(10): 22−30.

    Chen Zihe, Ji Chunyan, Guo Jianting, et al. Performance investigation of an integrated device of oscillating buoy wave energy converter and Floating Breakwater[J]. Ship Engineering, 2021, 43(10): 22−30.
    [13]
    Zhu Xinying. Application of the CIP method to strongly nonlinear wave-body interaction problems[D]. Trondheim: Norwegian University of Science and Technology, 2006.
    [14]
    赵西增, 刘必劲, 梁书秀, 等. 紧致插值曲线CIP方法及其应用[J]. 船舶力学, 2016, 20(4): 393−402.

    Zhao Xizeng, Liu Bijin, Liang Shuxiu, et al. Constrained Interpolation Profile (CIP) method and its application[J]. Journal of Ship Mechanics, 2016, 20(4): 393−402.
    [15]
    Xu Sheng, Wang Z J. An immersed interface method for simulating the interaction of a fluid with moving boundaries[J]. Journal of Computational Physics, 2006, 216(2): 454−493. doi: 10.1016/j.jcp.2005.12.016
    [16]
    Xiao F, Honma Y, Kono T. A simple algebraic interface capturing scheme using hyperbolic tangent function[J]. International Journal for Numerical Methods in Fluids, 2005, 48(9): 1023−1040. doi: 10.1002/fld.975
    [17]
    Xu Jing, Wang Dongshi, Huang Hui, et al. A vortex-induced vibration model for the fatigue analysis of a marine drilling riser[J]. Ships and Offshore Structures, 2017, 12(S1): S280−S287.
    [18]
    刘冲. 垂直导桩锚固方箱−水平板式浮防波堤试验研究[D]. 大连: 大连理工大学, 2008.

    Liu Chong. Experimental study on pile-restrained pontoon-plates floating breakwater[D]. Dalian: Dalian University of Technology, 2008.
    [19]
    Koutandos E, Prinos P, Gironella X. Floating breakwaters under regular and irregular wave forcing: reflection and transmission characteristics[J]. Journal of Hydraulic Research, 2005, 43(2): 174−188. doi: 10.1080/00221686.2005.9641234
    [20]
    He Fang, Huang Zhenhua, Law A W K. An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction[J]. Applied Energy, 2013, 106: 222−231. doi: 10.1016/j.apenergy.2013.01.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article views (332) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return