Citation: | Chen Kean,Zhang Huichao,Tao Chunhui, et al. Textural and trace elemental characteristics of sulfide from the Longqi hydrothermal field, Southwest Indian Ridge−Implication for the occurrence and precipitation mechanism of gold[J]. Haiyang Xuebao,2023, 45(6):93–108 doi: 10.12284/hyxb2023061 |
[1] |
Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 111−141.
|
[2] |
Bach W, Banerjee N R, Dick H J B, et al. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°−16°E[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(7): 1−14.
|
[3] |
Dias Á S, Barriga F J A S. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′ N; 33°26′ W) at MAR[J]. Marine Geology, 2006, 225(1/4): 157−175.
|
[4] |
Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J]. Oceanography, 2007, 20(1): 50−65. doi: 10.5670/oceanog.2007.80
|
[5] |
Boltovskoy D. Encyclopedia of marine geosciences[J]. Ameghiniana, 2017, 54(2): 255−256. doi: 10.5710/AMGH.v54i2.1
|
[6] |
Ye Jun, Shi Xuefa, Yang Yaomin, et al. The occurrence of gold in hydrothermal sulfide at Southwest Indian Ridge 49.6°E[J]. Acta Oceanologica Sinica, 2012, 31(6): 72−82. doi: 10.1007/s13131-012-0254-4
|
[7] |
Fuchs S, Hannington M D, Petersen S. Divining gold in seafloor polymetallic massive sulfide systems[J]. Mineralium Deposita, 2019, 54(6): 789−820. doi: 10.1007/s00126-019-00895-3
|
[8] |
Moss R, Scott S D. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus Basin, Papua New Guinea[J]. The Canadian Mineralogist, 2001, 39(4): 957−978. doi: 10.2113/gscanmin.39.4.957
|
[9] |
Knight R D, Roberts S, Webber A P. The influence of spreading rate, basement composition, fluid chemistry and chimney morphology on the formation of gold-rich SMS deposits at slow and ultraslow mid-ocean ridges[J]. Mineralium Deposita, 2018, 53(1): 143−152. doi: 10.1007/s00126-017-0762-4
|
[10] |
黄威, 陶春辉, 廖时理, 等. 金在洋脊超镁铁质与镁铁质热液系统中的差异性聚集[J]. 海洋地质与第四纪地质, 2020, 40(1): 126−135.
Huang Wei, Tao Chunhui, Liao Shili, et al. Differential deposition of gold in mafic-hosted and ultramafic-hosted hydrothermal systems on the mid-ocean ridge[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 126−135.
|
[11] |
Hannington M D, Peter J M, Scott S D. Gold in sea-floor polymetallic sulfide deposits[J]. Economic Geology, 1986, 81(8): 1867−1883. doi: 10.2113/gsecongeo.81.8.1867
|
[12] |
Herzig P M, Hannington M D, Fouquet Y, et al. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific[J]. Economic Geology, 1993, 88(8): 2182−2209. doi: 10.2113/gsecongeo.88.8.2182
|
[13] |
张海桃, 杨耀民, 梁娟娟, 等. 全球现代海底块状硫化物矿床资源量估计[J]. 海洋地质与第四纪地质, 2014, 34(5): 107−118.
Zhang Haitao, Yang Yaomin, Liang Juanjuan, et al. A global estimate of resource potential for modern seafloor massive sulfide deposits[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 107−118.
|
[14] |
Hannington M D, Petersen S, Herzig P M, et al. A global database of seafloor hydrothermal systems, including a digital database of geochemical analyses of seafloor polymetallic sulfides[R]. Ottawa: Geological Survey of Canada, 2004: 4598.
|
[15] |
Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges[J]. Comptes Rendus Geoscience, 2003, 335(10/11): 825−852.
|
[16] |
Pokrovski G S, Akinfiev N N, Borisova A Y, et al. Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling[J]. Geological Society, London, Special Publications, 2014, 402(1): 9−70. doi: 10.1144/SP402.4
|
[17] |
Petersen S, Krätschell A, Augustin N, et al. News from the seabed——Geological characteristics and resource potential of deep-sea mineral resources[J]. Marine Policy, 2016, 70: 175−187. doi: 10.1016/j.marpol.2016.03.012
|
[18] |
叶俊, 石学法, 杨耀民, 等. 西南印度洋超慢速扩张脊49.6°E热液区硫化物矿物学特征及其意义[J]. 矿物学报, 2011, 31(1): 17−29.
Ye Jun, Shi Xuefa, Yang Yaomin, et al. Mineralogy of sulfides from ultraslow spreading southwest Indian ridge 49.6°E hydrothermal field and its metallogenic significance[J]. Acta Mineralogica Sinica, 2011, 31(1): 17−29.
|
[19] |
曹红, 孙治雷, 刘昌岭, 等. 西南印度洋脊龙旂热液场金属硫化物的矿物学组成及指示意义[J]. 海洋地质与第四纪地质, 2018, 38(4): 179−192.
Cao Hong, Sun Zhilei, Liu Changling, et al. Mineralogical composition and its significance of hydrothermal sulfides from the Longqi hydrothermal field on the Southwest Indian Ridge[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 179−192.
|
[20] |
Tao Chunhui, Li Huaiming, Huang Wei, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56(26): 2828−2838. doi: 10.1007/s11434-011-4619-4
|
[21] |
Mercier-Langevin P, Hannington M D, Dubé B, et al. The gold content of volcanogenic massive sulfide deposits[J]. Mineralium Deposita, 2011, 46(5): 509−539.
|
[22] |
Pantó G, Pantó G. Electron-probe check of fe-distribution in sphalerite grains of the Nagybörzsöny hydrothermal ore deposits, Hungary[J]. Mineralium Deposita, 1972, 7(2): 126−140. doi: 10.1007/BF00207150
|
[23] |
Georgen J E, Lin Jian, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 283−300.
|
[24] |
Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge[J]. Chinese Science Bulletin, 2014, 59(19): 2266−2276. doi: 10.1007/s11434-014-0182-0
|
[25] |
李小虎, 初凤友, 雷吉江, 等. 现代海底超镁铁质岩系热液系统与地质意义[J]. 海洋地质与第四纪地质, 2008, 28(4): 133−139.
Li Xiaohu, Chu Fengyou, Lei Jijiang, et al. Characteristics of seafloor ultramafic hosted hydrothermal systems and the implications[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 133−139.
|
[26] |
Münch U, Lalou C, Halbach P, et al. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E-mineralogy, chemistry and chronology of sulfide samples[J]. Chemical Geology, 2001, 177(3/4): 341−349.
|
[27] |
Tao Chunhui, Lin Jian, Guo Shiqin. Discovery of the fi rst active hydrothermal vent fi eld at the ultraslow spreading Southwest Indian Ridge: the Chinese DY115–19 Cruise[J]. InterRidge News, 2007, 16: 25−26.
|
[28] |
陶春辉, 李怀明, 黄威, 等. 西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义[J]. 科学通报, 2011, 56(28/29): 2413−2423.
Tao Chunhui, Li Huaiming, Huang Wei, et al. Mineralogical and geochemical features of sulfide chimney from the 49°39′E hydrothermal field on Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56(28/29): 2413−2423.
|
[29] |
Liao Shili, Tao Chunhui, Jamieson J W, et al. Oxidizing fluids associated with detachment hosted hydrothermal systems: example from the Suye hydrothermal field on the ultraslow-spreading Southwest Indian Ridge[J]. Geochimica et Cosmochimica Acta, 2022, 328: 19−36. doi: 10.1016/j.gca.2022.04.025
|
[30] |
Liang Yuyang, Li Jiabiao, Li Shoujun, et al. The morphotectonics and its evolutionary dynamics of the central Southwest Indian Ridge (49° to 51°E)[J]. Acta Oceanologica Sinica, 2013, 32(12): 87−95. doi: 10.1007/s13131-013-0394-1
|
[31] |
Zhu Jian, Lin Jian, Chen Y J, et al. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge[J]. Geophysical Research Letters, 2010, 37(18): L18303.
|
[32] |
Tao Chunhui, Seyfried W E Jr, Lowell R P, et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge[J]. Nature Communications, 2020, 11(1): 1300. doi: 10.1038/s41467-020-15062-w
|
[33] |
Sugaki A, Shima H, Kitakaze A, et al. Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350 degrees C and 300 degrees C[J]. Economic Geology, 1975, 70(4): 806−823. doi: 10.2113/gsecongeo.70.4.806
|
[34] |
李军, 孙治雷, 黄威, 等. 现代海底热液过程及成矿[J]. 地球科学-中国地质大学学报, 2014, 39(3): 312−324.
Li Jun, Sun Zhilei, Huang Wei, et al. Modern seafloor hydrothermal processes and mineralization[J]. Earth Science-Journal of China University of Geosciences, 2014, 39(3): 312−324.
|
[35] |
Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: a LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761−4791. doi: 10.1016/j.gca.2009.05.045
|
[36] |
Zhang Jing, Deng Jun, Chen Huayong, et al. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: implication for ore-forming process[J]. Gondwana Research, 2014, 26(2): 557−575. doi: 10.1016/j.gr.2013.11.003
|
[37] |
Maslennikov V V, Maslennikova S P, Large R R, et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS)[J]. Economic Geology, 2009, 104(8): 1111−1141. doi: 10.2113/gsecongeo.104.8.1111
|
[38] |
De Ronde C E J, Massoth G J, Butterfield D A, et al. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand[J]. Mineralium Deposita, 2011, 46(5): 541−584.
|
[39] |
Keith M, Haase K M, Klemd R, et al. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus[J]. Chemical Geology, 2016, 423: 7−18. doi: 10.1016/j.chemgeo.2015.12.012
|
[40] |
Simon G, Huang Hui, Penner-Hahn J E, et al. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite[J]. American Mineralogist, 1999, 84(7/8): 1071−1079.
|
[41] |
Reich M, Kesler S E, Utsunomiya S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2781−2796. doi: 10.1016/j.gca.2005.01.011
|
[42] |
Revan M K, Genç Y, Maslennikov V V, et al. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey)[J]. Ore Geology Reviews, 2014, 63: 129−149. doi: 10.1016/j.oregeorev.2014.05.006
|
[43] |
Butler I B, Nesbitt R W. Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Earth and Planetary Science Letters, 1999, 167(3/4): 335−345.
|
[44] |
Tivey M K. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modeling transport and reaction[J]. Geochimica et Cosmochimica Acta, 1995, 59(10): 1933−1949. doi: 10.1016/0016-7037(95)00118-2
|
[45] |
Maslennikov V V, Maslennikova S P, Large R R, et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers[J]. Ore Geology Reviews, 2017, 85: 64−106. doi: 10.1016/j.oregeorev.2016.09.012
|
[46] |
Gammons C H, Williams-Tones A E. The solubility of Au-Ag alloy + AgCl in HCl/NaCl solutions at 300°C: new data on the stability of Au (1) chloride complexes in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3453−3468. doi: 10.1016/0016-7037(95)00234-Q
|
[47] |
Widler A M, Seward T M. The adsorption of gold (I) hydrosulphide complexes by iron sulphide surfaces[J]. Geochimica et Cosmochimica Acta, 2002, 66(3): 383−402. doi: 10.1016/S0016-7037(01)00791-8
|
[48] |
Williams-Jones A E, Bowell R J, Migdisov A A. Gold in solution[J]. Elements, 2009, 5(5): 281−287. doi: 10.2113/gselements.5.5.281
|
[49] |
Benning L G, Seward T M. Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150−400°C and 500−1500 bar[J]. Geochimica et Cosmochimica Acta, 1996, 60(11): 1849−1871. doi: 10.1016/0016-7037(96)00061-0
|
[50] |
Gibert F, Pascal M L, Pichavant M. Gold solubility and speciation in hydrothermal solutions: experimental study of the stability of hydrosulphide complex of gold (AuHS) at 350 to 450°C and 500 bars[J]. Geochimica et Cosmochimica Acta, 1998, 62(17): 2931−2947. doi: 10.1016/S0016-7037(98)00209-9
|
[51] |
Stefánsson A, Seward T M. Gold (I) complexing in aqueous sulphide solutions to 500°C at 500 bar[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4121−4143. doi: 10.1016/j.gca.2004.04.006
|
[52] |
Mann A W. Mobility of gold and silver in lateritic weathering profiles: some observations from Western Australia[J]. Economic Geology, 1984, 79(1): 38−49. doi: 10.2113/gsecongeo.79.1.38
|
[53] |
Gammons C H, Williams-Jones A E. Chemical mobility of gold in the porphyry-epithermal environment[J]. Economic Geology, 1997, 92(1): 45−59. doi: 10.2113/gsecongeo.92.1.45
|
[54] |
Seward T M, Williams-Jones A E, Migdisov A A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids[J]. Treatise on Geochemistry (Second Edition), 2014, 13: 29−57.
|