Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
Yu Jian,Jin Bingfu,Wang Mengyao, et al. Component changes and control factors of detrital minerals in riverbed, estuary and beach of short source rivers: taking the Xin’an River in Shandong Peninsula as an example[J]. Haiyang Xuebao,2023, 45(7):168–182 doi: 10.12284/hyxb2023055
Citation: Yu Jian,Jin Bingfu,Wang Mengyao, et al. Component changes and control factors of detrital minerals in riverbed, estuary and beach of short source rivers: taking the Xin’an River in Shandong Peninsula as an example[J]. Haiyang Xuebao,2023, 45(7):168–182 doi: 10.12284/hyxb2023055

Component changes and control factors of detrital minerals in riverbed, estuary and beach of short source rivers: taking the Xin’an River in Shandong Peninsula as an example

doi: 10.12284/hyxb2023055
  • Received Date: 2022-08-30
  • Rev Recd Date: 2022-11-16
  • Available Online: 2023-06-27
  • Publish Date: 2023-07-01
  • Most of the small rivers in the Shandong Peninsula have clear sediment sources and relatively small mineral deposition differentiation, and their study can provide regional similarities for the analysis of the sources of large rivers into the sea, as well as the characteristics of the material sources in the Shandong Peninsula for the deposition of the Yellow Sea shelf and Bohai Sea shelf. In this paper, the distribution patterns of detrital minerals in surface sediment samples taken from riverbeds, estuaries and beaches were analysed at multiple grain levels, taking the Xin’an River, a small short-source river in the northeastern part of the Shandong Peninsula, as an example. The study shows that the Xin’an River basin and beach sediments are mostly medium and fine sands, with moderate heavy mineral content in the whole sample, ranging from 1.47% to 8.19%. Twenty-seven heavy minerals and eight light minerals occur, with the main heavy minerals hornblende (41.7%), chlorite (16.7%), actinolite (10.6%) and limonite (6.7%) and the main light minerals quartz (49.0%), plagioclase (26.5%) and potassium feldspar (20.7%), which are much more abundant than the other detrital minerals in the riverbed, estuary and beach, and the mineral assemblage remains constant, with less significant variation in relative content between them, while there is a significant non-linear correlation between non-dominant mineral species and clastic grain size. Mineral species and content in the Xin’an River are controlled by the regional lithological sources, i.e. acidic and moderately acidic intrusive rocks and regional metamorphic rocks, and the relatively stable output of amphibole group minerals across the different features of the Xin’an River is responsible for their homogeneity. The short source rivers of the Shandong Peninsula are derived from similar geological features and rock types, although the types and content of detrital minerals vary. The main controlling factors for mineral composition variation are regional sources and particle size sorting, followed by sedimentary environmental differences. In contrast, the high content of mica group and carbonate minerals in a specific grain size and the low content of amphibole group minerals are the aspects that distinguish the Huanghe River from the river source materials in the northern and southern coastal waters of the Shandong Peninsula.
  • loading
  • [1]
     Garzanti E, Andò S, France-Lanord C, et al. Mineralogical and chemical variability of fluvial sediments: 1. Bedload sand (Ganga-Brahmaputra, Bangladesh)[J]. Earth and Planetary Science Letters, 2010, 299(3/4): 368−381.
    [2]
    Garzanti E, Andò S, Vezzoli G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition[J]. Earth and Planetary Science Letters, 2008, 273(1/2): 138−151.
    [3]
    方建勇, 陈坚, 王爱军, 等. 台湾海峡表层沉积物的粒度和碎屑矿物分布特征[J]. 海洋学报, 2012, 34(5): 91−99.

    Fang Jianyong, Chen Jian, Wang Aijun, et al. The distribution characteristics of grain size and mineral of surface sediment in the Taiwan Strait[J]. Haiyang Xuebao, 2012, 34(5): 91−99.
    [4]
    孙白云. 黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J]. 海洋地质与第四纪地质, 1990, 10(3): 23−34.

    Sun Baiyun. Detrital mineral assemblages in the Huanghe, Changjiang and Zhujiang River Delta sediments[J]. Marine Geology & Quaternary Geology, 1990, 10(3): 23−34.
    [5]
    Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525−544. doi: 10.1086/629606
    [6]
    杨守业, 印萍. 自然环境变化与人类活动影响下的中小河流沉积物源汇过程[J]. 海洋地质与第四纪地质, 2018, 38(1): 1−10.

    Yang Shouye, Yin Ping. Sediment source-to-sink processes of small mountainous rivers under the impacts of natural environmental changes and human activities[J]. Marine Geology and Quaternary Geology, 2018, 38(1): 1−10.
    [7]
    林晓彤, 李巍然, 时振波. 黄河物源碎屑沉积物的重矿物特征[J]. 海洋地质与第四纪地质, 2003, 23(3): 17−21.

    Lin Xiaotong, Li Weiran, Shi Zhenbo. Characteristics of mineralogy in the clastic sediments from the Yellow River Provenance, China[J]. Marine Geology & Quaternary Geology, 2003, 23(3): 17−21.
    [8]
    王中波, 杨守业, 李日辉, 等. 黄河水系沉积物碎屑矿物组成及沉积动力环境约束[J]. 海洋地质与第四纪地质, 2010, 30(4): 73−85.

    Wang Zhongbo, Yang Shouye, Li Rihui, et al. Detrital mineral composition of the sediments from Huanghe and its hydrodynamic environmental constraints[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 73−85.
    [9]
    Jin Bingfu, Wang Mengyao, Yue Wei, et al. Heavy mineral variability in the Huanghe River sediments as determined by the multiple-window strategy[J]. Minerals, 2019, 9(85): 1−16. doi: 10.3390/min9020085
    [10]
    樊水淼, 金秉福, 王昕, 等. 云母在黄河口段沉积物中的形状系数与等效沉积[J]. 海洋地质前沿, 2021, 37(5): 31−38.

    Fan Shuimiao, Jin Bingfu, Wang Xin, et al. Mica shape factor and its equivalent sedimentation in the Sediments of the Yellow River Estuary[J]. Marine Geology Frontiers, 2021, 37(5): 31−38.
    [11]
    金秉福, 党丽丽, 孔庆祥, 等. 黄河和长江沉积角闪石亲石元素地球化学特征对比与物源辨识[J]. 沉积学报, 2022, 40(1): 149−165. doi: 10.14027/j.issn.1000-0550.2020.098

    Jin Bingfu, Dang Lili, Kong Qingxiang, et al. Comparison of geochemical characteristics of Lithophile Elements of Amphibole: identification of estuarine sediment provenance, Huanghe River and Changjiang River[J]. Acta Sedimentologica Sinica, 2022, 40(1): 149−165. doi: 10.14027/j.issn.1000-0550.2020.098
    [12]
    王中波, 杨守业, 李萍, 等. 长江水系沉积物碎屑矿物组成及其示踪意义[J]. 沉积学报, 2006, 24(4): 570−578.

    Wang Zhongbo, Yang Shouye, Li Ping, et al. Detrital mineral compositions of the Changjiang River sediments and their tracing implications[J]. Acta Sedimentologica Sinica, 2006, 24(4): 570−578.
    [13]
    窦衍光, 王昆山, 王国庆, 等. 长江水下三角洲沉积物碎屑矿物研究[J]. 海洋科学, 2007, 31(4): 22−26, 31.

    Dou Yanguang, Wang Kunshan, Wang Guoqing, et al. Research of detrital minerals in the sediment of sub-aqueous Yangtze Delta[J]. Marine Science, 2007, 31(4): 22−26, 31.
    [14]
    潘大东, 王张华, 陈艇, 等. 长江口表层沉积物矿物磁性分区特征及其沉积环境指示意义[J]. 海洋学报, 2015, 37(5): 101−111.

    Pan Dadong, Wang Zhanghua, Chen Ting, et al. Mineral magnetic characteristics of surficial sediments and their implications for identifying sedimentary environments at the Changjiang River Mouth[J]. Marine Science, 2015, 37(5): 101−111.
    [15]
    Yue Wei, Jin Bingfu, Zhao Baocheng. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: implication for provenance evolution of the Yangtze Delta[J]. Sedimentary Geology, 2018, 364: 42−52. doi: 10.1016/j.sedgeo.2017.12.006
    [16]
     Cascalho J, Fradique C. Chapter 3 The sources and hydraulic sorting of heavy minerals on the Northern Portuguese continental margin[J]. Developments in Sedimentology, 2007, 58: 75−110.
    [17]
     Pang Hongli, Pan Baotian, Garzanti E, et al. Mineralogy and geochemistry of modern Yellow River sediments: Implications for weathering and provenance[J]. Chemical Geology, 2018, 488: 76−86. doi: 10.1016/j.chemgeo.2018.04.010
    [18]
     Garzanti E, Andò S. Heavy minerals for junior woodchucks[J]. Minerals, 2019, 9(148): 2−25. doi: 10.3390/min9030148
    [19]
     Morton A C. Geochemical studies of detrital heavy minerals and their application to provenance research[J]. Geological Society, London, Special Publications, 1991, 57(1): 31−45. doi: 10.1144/GSL.SP.1991.057.01.04
    [20]
    Weckwerth P, Chabowski M. Heavy minerals as a tool to reconstruct river activity during the Weichselian glaciation (Toruń Basin, Poland)[J]. Geologos, 2013, 19(1/2): 25−46.
    [21]
    Eker C S, Sipahi F, Gümüş M K. Tracing provenance and chemical weathering changes in Ankara Stream sediments, central Turkey: geochemical and Sr-Nd-Pb-O isotopic evidence[J]. Journal of African Earth Sciences, 2018, 138: 367−382. doi: 10.1016/j.jafrearsci.2017.11.034
    [22]
    王利波, 李军, 赵京涛, 等. 辽东湾表层沉积物碎屑矿物组合分布及其对物源和沉积物扩散的指示意义[J]. 海洋学报, 2014, 36(2): 66−74.

    Wang Libo, Li Jun, Zhao Jingtao, et al. Detrital mineral assemblages and distributions as indicators of provenance and dispersal pattern in surface sediments from Liaodong Bay, Bohai Sea[J]. Haiyang Xuebao, 2014, 36(2): 66−74.
    [23]
    邓凯, 杨守业, 王中波, 等. 台湾山溪性小河流碎屑重矿物组成及其示踪意义[J]. 沉积学报, 2016, 34(3): 531−542.

    Deng Kai, Yang Shouye, Wang Zhongbo, et al. Detrital heavy mineral assemblages in the river sediments from Taiwan and its implications for sediment provenance[J]. Acta Sedimentologica Sinica, 2016, 34(3): 531−542.
    [24]
     Li Guangxue, Wei Helong, Yue Shuhong, et al. Sedimentation in the Yellow River Delta, part II: suspended sediment dispersal and deposition on the subaqueous delta[J]. Marine Geology, 1998, 149(1/4): 113−131.
    [25]
     Liu Jian, Saito Y, Wang Hong, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology, 2007, 236(3/4): 165−187.
    [26]
    窦衍光, 李军, 杨守业. 山东半岛东部海域表层沉积物元素组成及物源指示意义[J]. 海洋学报, 2012, 34(1): 109−119.

    Dou Yanguang, Li Jun, Yang Shouye. Element compositions and provenance implication of surface sediments in offshore areas of the eastern Shandong Peninsula in China[J]. Haiyang Xuebao, 2012, 34(1): 109−119.
    [27]
     Qin Yachao, Xue Chunting, Jiang Xuejun. Tidal current-dominated depositional environments in the central-northern Yellow Sea as revealed by heavy-mineral and grain-size dispersals[J]. Marine Geology, 2018, 398: 59−72. doi: 10.1016/j.margeo.2018.01.004
    [28]
    张维武. 山东省辛安河上游砂金矿床成矿地质特征[J]. 黄金, 1989, 10(12): 7−12.

    Zhang Weiwu. The metallogenic geological characteristics of placer gold deposit in upper reaches of Xin’an River, Shandong Province[J]. Gold, 1989, 10(12): 7−12.
    [29]
    金秉福, 王孟瑶, 王昆山, 等. 长江口和黄东海沉积物单矿物分选的常用方法和流程[J]. 海洋地质与第四纪地质, 2019, 39(1): 163−174.

    Jin Bingfu, Wang Mengyao, Wang Kunshan, et al. Methods of single mineral separation for sediments of the Changjiang Estuary, the Yellow Sea and the East China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 163−174.
    [30]
    王孟瑶, 金秉福, 岳伟. 长江口表层沉积物重矿物在不同粒级中的分布与研究意义[J]. 海洋学报, 2019, 41(11): 89−100.

    Wang Mengyao, Jin Bingfu, Yue Wei. Patterns of heavy mineral combination in different grain-size categories and their sedimentary significance: a case study for surfical sediments in the Changjiang River Estuary[J]. Haiyang Xuebao, 2019, 41(11): 89−100.
    [31]
     Mange M A, Maurer H F W. Heavy Minerals in Colour[M]. London: Chapman & Hall, 1992.
    [32]
    杨立建, 马小川, 贾建军, 等. 近百年来黄河改道及输沙量变化对山东半岛泥质楔沉积物粒度特征的影响[J]. 海洋学报, 2020, 42(1): 78−89.

    Yang Lijian, Ma Xiaochuan, Jia Jianjun, et al. Impacts of channel shifts and interannual sediment load reducing of the Yellow River on the grain size characteristics of sediments in the Shandong mud wedge over the past 100 years[J]. Haiyang Xuebao, 2020, 42(1): 78−89.
    [33]
    刘宝珺. 沉积岩石学[M]. 北京: 地质出版社, 1980.

    Liu Baojun. Sedimentary Petrology[M]. Beijing: Geological Publishing House, 1980.
    [34]
     Morton A, Hallsworth C, Strogen D. Evolution of provenance in the NE Atlantic rift: the Early-Middle Jurassic succession in the Heidrun Field, Halten Terrace, offshore Mid-Norway[J]. Marine and Petroleum Geology, 2009, 26(7): 1100−1117. doi: 10.1016/j.marpetgeo.2008.07.006
    [35]
     Garzanti E, Andò S, Vezzoli G. Grain-size dependence of sediment composition and environmental bias in provenance studies[J]. Earth and Planetary Science Letters, 2009, 277(3/4): 422−432.
    [36]
     Garzanti E, Andò S, Vezzoli G, et al. Petrology of the Namib Sand Sea: long-distance transport and compositional variability in the wind-displaced Orange Delta[J]. Earth-Science Reviews, 2012, 112(3/4): 173−189.
    [37]
     Wang Mengyao, Jin Bingfu, Gao Jianhua, et al. Identification of sediment provenance in the South Yellow Sea using detrital amphibole geochemistry[J]. Marine Geology, 2022, 450: 106857. doi: 10.1016/j.margeo.2022.106857
    [38]
    张凯棣, 李安春, 董江, 等. 东海表层沉积物碎屑矿物组合分布特征及其物源环境指示[J]. 沉积学报, 2016, 34(5): 902−911.

    Zhang Kaidi, Li Anchun, Dong Jiang, et al. Detrital mineral distributions in surface sediments of the East China Sea: implications for sediment provenance and sedimentary environment[J]. Acta Sedimentologica Sinica, 2016, 34(5): 902−911.
    [39]
    王孔海. 山东烟台地区晚太古代胶东群变质岩系原岩恢复及其地质意义[C]//中国地质科学院沈阳地质矿产研究所文集. 沈阳: 辽宁科学技术出版社, 1983: 14−36.

    Wang Konghai. Primary rock restoration for metamorphic rocks of late Archean Jiaodong Group and its significance in Yantai, Shandong Province[C]//Bull Shenyang institute of Geology and Mineral Resources Chinese Academy of Geological Sciences. Shenyang: Liaoning Science and Technology Press, 1983: 14−36.
    [40]
    李学杰, 汪品先, 廖志良, 等. 南海西部表层沉积物碎屑矿物分布特征及其物源[J]. 中国地质, 2008, 35(1): 123−130. doi: 10.3969/j.issn.1000-3657.2008.01.013

    Li Xuejie, Wang Pinxian, Liao Zhiliang, et al. Distribution of clastic minerals of surface sediments in the western South China Sea and their provenance[J]. Geology in China, 2008, 35(1): 123−130. doi: 10.3969/j.issn.1000-3657.2008.01.013
    [41]
    杨东宁, 袁东星. 主成分分析法用于厦门西港和香港维多利亚港沉积物样品分类研究[J]. 海洋环境科学, 1998, 17(3): 61−66.

    Yang Dongning, Yuan Dongxing. Application of principal component analysis to sediment sample classification[J]. Marine Environmental Science, 1998, 17(3): 61−66.
    [42]
    Cojan I, Renard M. Sedimentology[M]. Netherlands: CRC Press, 2020.
    [43]
    刘炳辰, 金秉福, 王萌, 等. 内蒙古五岔沟地区洮儿河流域重矿物特征分析[J]. 世界地质, 2013, 32(1): 69−76. doi: 10.3969/j.issn.1004-5589.2013.01.009

    Liu Bingchen, Jin Bingfu, Wang Meng, et al. Analysis of the characteristics of heavy minerals in Taoer River area, Wuchagou region in Inner Mongolia[J]. Global Geology, 2013, 32(1): 69−76. doi: 10.3969/j.issn.1004-5589.2013.01.009
    [44]
    胡修棉. 物源分析的一个误区: 砂粒在河流搬运过程中的变化[J]. 古地理学报, 2017, 19(1): 175−184. doi: 10.7605/gdlxb.2017.01.014

    Hu Xiumian. A misunderstanding in provenance analysis: sand changes of mineral, roundness, and size in flowing-water transportation[J]. Journal of Palaeogeography, 2017, 19(1): 175−184. doi: 10.7605/gdlxb.2017.01.014
    [45]
    石勇, 高建华, 刘强, 等. 陆架环流作用下的北黄海中北部细颗粒物质输运[J]. 海洋学报, 2019, 41(4): 53−63.

    Shi Yong, Gao Jianhua, Liu Qiang, et al. Fine sediment transport in north-central of Yellow Sea: the role of continental shelf circulation[J]. Haiyang Xuebao, 2019, 41(4): 53−63.
    [46]
    林旭, 赵希涛, 吴中海, 等. 渤海湾周缘主要河流钾长石物源示踪指标研究[J]. 地质科技通报, 2020, 39(6): 10−18.

    Lin Xu, Zhao Xitao, Wu Zhonghai, et al. Source tracing elements of K-feldspars of main rivers around Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 10−18.
    [47]
    Jin Bingfu, Wang Mengyao, Yue Wei, et al. Comparative analysis of heavy mineral characteristics of sediments from the Huanghe River and the Changjiang River based on the multiple-window grain size strategy[J]. Continental Shelf Research, 2021, 216: 104326. doi: 10.1016/j.csr.2020.104326
    [48]
    常丽华, 陈曼云, 金巍, 等. 透明矿物薄片鉴定手册[M]. 北京: 地质出版社, 2014.

    Chang Lihua, Chen Manyun, Jin Wei, et al. Manual of Transparent Mineral Thin Section Identification[M]. Beijing: Geological Publishing House, 2014.
    [49]
    刘雪亚, 王荃. 中国地质图集[M]. 北京: 地质出版社, 2002.

    Liu Xueya, Wang Quan. Geological Atlas of China[M]. Beijing: Geological Publishing House, 2002.
    [50]
    赵珊茸. 结晶学及矿物学[M]. 北京: 高等教育出版社, 2004.

    Zhao Shanrong. Crystallography and Mineralogy[M]. Beijing: Higher Education Press, 2004.
    [51]
    金秉福, 张云吉, 宋键. 长江三角洲第一硬土层中微结核的矿物化学特征及其成因[J]. 海洋地质与第四纪地质, 2007, 27(3): 9−15.

    Jin Bingfu, Zhang Yunji, Song Jian. Characteristics of mineral chemistry and formation of the micro-nodules in the first stiff clay layer in the Yangtze River Delta[J]. Marine Geology & Quaternary Geology, 2007, 27(3): 9−15.
    [52]
    宁泽, 韩宗珠, 林学辉, 等. 山东半岛南部近岸海域碎屑矿物对中小河流的物源响应[J]. 海洋地质前沿, 2019, 35(4): 57−68.

    Ning Ze, Han Zongzhu, Lin Xuehui, et al. Provenance response of detrital minerals from medium and small rivers in offshore Southern Shandong Peninsula[J]. Marine Geology Frontiers, 2019, 35(4): 57−68.
    [53]
    王昆山, 石学法, 蔡善武, 等. 黄河口及莱州湾表层沉积物中重矿物分布与来源[J]. 海洋地质与第四纪地质, 2010, 30(6): 1−8.

    Wang Kunshan, Shi Xuefa, Cai Shanwu, et al. Distribution and provenance of the surface sediments of the Yellow River Mouth and Laizhou Bay deduced from heavy minerals[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 1−8.
    [54]
    王艳君, 金秉福. 黄河河口段与海河河口段沉积物碳酸盐对比分析[J]. 海洋科学, 2017, 41(7): 94−104. doi: 10.11759/hykx20161208001

    Wang Yanjun, Jin Bingfu. Comparative analysis of carbonates in sediments of the Yellow River and the Haihe River estuaries[J]. Marine Sciences, 2017, 41(7): 94−104. doi: 10.11759/hykx20161208001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article views (276) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return