Citation: | Ji Shunying,Wang Jianwei,Yuan Kuilin, et al. Cumulative damage analysis of ice-induced structural fatigue for polar ships navigating in ice-covered regions[J]. Haiyang Xuebao,2023, 45(7):102–109 doi: 10.12284/hyxb2023051 |
[1] |
刘大海, 马云瑞, 王春娟, 等. 全球气候变化环境下北极航道资源发展趋势研究[J]. 中国人口·资源与环境, 2015, 25(S1): 6−9.
Liu Dahai, Ma Yunrui, Wang Chunjuan, et al. Developments of Arctic passage resources under global climate change[J]. China Population, Resources and Environment, 2015, 25(S1): 6−9.
|
[2] |
孙鲁闽. 北极航道现状与发展趋势及对策[J]. 海洋工程, 2016, 34(3): 123−132. doi: 10.16483/j.issn.1005-9865.2016.03.014
Sun Lumin. Status development tendency and strategy of Arctic passage[J]. The Ocean Engineering, 2016, 34(3): 123−132. doi: 10.16483/j.issn.1005-9865.2016.03.014
|
[3] |
周燕, 王元清, 戴国欣, 等. 低温对钢结构疲劳性能影响研究综述[J]. 低温建筑技术, 2013, 35(7): 5−9. doi: 10.3969/j.issn.1001-6864.2013.07.002
Zhou Yan, Wang Yuanqing, Dai Guoxin, et al. Status on low temperature fatigue behavior of steel struture[J]. Low Temperature Architecture Technology, 2013, 35(7): 5−9. doi: 10.3969/j.issn.1001-6864.2013.07.002
|
[4] |
Johnston M, Timco G W, Frederking R, et al. Measuring global impact forces on the CCGS Terry Fox with an inertial measurement system called MOTAN[J]. Cold Regions Science and Technology, 2008, 52(1): 67−82. doi: 10.1016/j.coldregions.2007.04.014
|
[5] |
Leira B, Børsheim L, Espeland Ø, et al. Ice-load estimation for a ship hull based on continuous response monitoring[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2009, 223(4): 529−540. doi: 10.1243/14750902JEME141
|
[6] |
Aksnes V. A simplified interaction model for moored ships in level ice[J]. Cold Regions Science and Technology, 2010, 63(1/2): 29−39.
|
[7] |
何帅康, 陈晓东, 孔帅, 等. 基于动力效应的船体远场冰载荷测量与识别[J]. 中国舰船研究, 2021, 16(5): 54−63. doi: 10.19693/j.issn.1673-3185.02065
He Shuaikang, Chen Xiaodong, Kong Shuai, et al. Measurement and identification of ice loads on hull structures in far field based on dynamic effects[J]. Chinese Journal of Ship Research, 2021, 16(5): 54−63. doi: 10.19693/j.issn.1673-3185.02065
|
[8] |
崔洪宇, 胡大士, 孔帅, 等. 基于正则化方法的雪龙号破冰船冰载荷反演的研究[J]. 中国造船, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011
Cui Hongyu, Hu Dashi, Kong Shuai, et al. Study on inversion of ice load for Xue Long icebreaker based on regularization method[J]. Shipbuilding of China, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011
|
[9] |
Wang Jianwei, Chen Xiaodong, Duan Qinglin, et al. Eliminating the influence of measuring point failure in ice load identification of polar ship structures[J]. Ocean Engineering, 2022, 261: 112082. doi: 10.1016/j.oceaneng.2022.112082
|
[10] |
Wang Jianwei, Chen Xiaodong, Sun Kai, et al. Far-field identification of ice loads on ship structures by radial basis function neural network[J]. Ocean Engineering, 2023, 282: 115072.
|
[11] |
Bridges R, Riska K, Zhang Shengming. Preliminary results of investigation on the fatigue of ship hull structures when navigating in ice[C]//Proceedings of the 7th International Conference and Exhibition on Performance of Ships and Structures in Ice, ICETECH 2006. Banff, Alberta, Canada: SNAME, 2006.
|
[12] |
Suyuthi A, Leira B J, Riska K. Fatigue damage of ship hulls due to local ice-induced stresses[J]. Applied Ocean Research, 2013, 42: 87−104. doi: 10.1016/j.apor.2013.05.003
|
[13] |
Kim J H, Kim Y. Numerical simulation on the ice-induced fatigue damage of ship structural members in broken ice fields[J]. Marine Structures, 2019, 66: 83−105. doi: 10.1016/j.marstruc.2019.03.002
|
[14] |
Hwang M R, Lee T K, Kang D H, et al. A study on ice-induced fatigue life estimation based on measured data of the ARAON[C]//Proceedings of the 26th International Ocean and Polar Engineering Conference, ISOPE 2016. Rhodes, Greece: International Society of Offshore and Polar Engineers, 2016.
|
[15] |
Chai Wei, Leira B J, Naess A. Short-term extreme ice loads prediction and fatigue damage evaluation for an icebreaker[J]. Ships and Offshore Structures, 2018, 13(S1): 127−137.
|
[16] |
Kim J H. Development of the analysis procedure for the ice-induced fatigue damage of a ship in broken ice fields[J]. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142(6): 061601. doi: 10.1115/1.4046874
|
[17] |
罗本永, 张升明, 陈忱. 基于冰载荷引起的船体结构疲劳损伤分析方法[J]. 船舶工程, 2020, 42(9): 19−24, 69. doi: 10.13788/j.cnki.cbgc.2020.09.04
Luo Benyong, Zhang Shengming, Chen Chen. Fatigue damage analysis method of ship structure based on ice load[J]. Ship Engineering, 2020, 42(9): 19−24, 69. doi: 10.13788/j.cnki.cbgc.2020.09.04
|
[18] |
Zhang Shengming, Bridges R, Tong J. Fatigue design assessment of ship structures induced by ice loading– An introduction to the ShipRight FDA ICE procedure[C]//Proceedings of the 21th International Offshore and Polar Engineering Conference, ISOPE-2011. Maui, Hawaii, USA: International Society of Offshore and Polar Engineers, 2011.
|
[19] |
陈崧, 竺一峰, 胡嘉骏, 等. 船体结构S-N曲线选取方法[J]. 舰船科学技术, 2014, 36(1): 22−26.
Chen Song, Zhu Yifeng, Hu Jiajun, et al. Research on selection method of S-N curve for hull structures[J]. Ship Science and Technology, 2014, 36(1): 22−26.
|
[20] |
中国船级社. 船体结构疲劳强度指南[S]. 北京: 中国船级社, 2021.
China Classification Society. Guidelines for fatigue strength of hull structures[S]. Beijing: China Classification Society, 2021.
|
[21] |
倪侃. 随机疲劳累积损伤理论研究进展[J]. 力学进展, 1999, 29(1): 43−65.
Ni Kan. Advances in stochastic theory of fatigue damage accumulation[J]. Advances in Mechanics, 1999, 29(1): 43−65.
|
[22] |
Miner M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): A159−A164. doi: 10.1115/1.4009458
|
[23] |
王键伟, 段庆林, 季顺迎. 冰区航行中船舶结构冰载荷的现场测量与反演方法研究进展[J]. 力学进展, 2020, 50(1): 93−123.
Wang Jianwei, Duan Qinglin, Ji Shunying. Research progress of field measurements and inversion methods of ice loads on ship structure during ice navigation[J]. Advances in Mechanics, 2020, 50(1): 93−123.
|
[24] |
何帅康, 陈晓东, 张宝森, 等. 基于实船试验的河冰载荷特性研究[J]. 中国造船, 2022, 63(4): 46−58.
He Shuaikang, Chen Xiaodong, Zhang Baosen, et al. Study on river ice load characteristics based on field measurements[J]. Shipbuilding of China, 2022, 63(4): 46−58.
|
[25] |
Suominen M, Kujala P, Romanoff J, et al. Influence of load length on short-term ice load statistics in full-scale[J]. Marine Structures, 2017, 52: 153−172. doi: 10.1016/j.marstruc.2016.12.006
|
[26] |
王键伟, 袁奎霖, 季顺迎. 船舶结构冰载荷的监测识别方法及时空特性分析[J]. 中国造船, 2023, 64(4): 41−56.
Wang Jianwei, Yuan Kuilin, Ji Shunying. Method of monitoring and identifying ice load on ship structures and analysis of its spatial-temporal characteristics[J]. Shipbuilding of China, 2023, 64(4): 41−56.
|
[27] |
王键伟, 陈晓东, 何帅康, 等. 失效测点影响下极地船舶结构冰载荷的有效识别方法[J]. 工程力学, 2021, 38(7): 226−238. doi: 10.6052/j.issn.1000-4750.2020.07.0507
Wang Jianwei, Chen Xiaodong, He Shuaikang, et al. An effective method for identifying ice loads on polar ship structures under the influence of failure measuring points[J]. Engineering Mechanics, 2021, 38(7): 226−238. doi: 10.6052/j.issn.1000-4750.2020.07.0507
|
[28] |
孔帅, 崔洪宇, 季顺迎. 船舶结构海冰载荷的实船测量及反演方法研究[J]. 振动与冲击, 2020, 39(20): 8−16. doi: 10.13465/j.cnki.jvs.2020.20.002
Kong Shuai, Cui Hongyu, Ji Shunying. Field measurement and an identification method of sea ice load on ship structures[J]. Journal of Vibration and Shock, 2020, 39(20): 8−16. doi: 10.13465/j.cnki.jvs.2020.20.002
|
[29] |
Kong Shuai, Cui Hongyu, Wu Gang, et al. Full-scale identification of ice load on ship hull by least square support vector machine method[J]. Applied Ocean Research, 2021, 106: 102439. doi: 10.1016/j.apor.2020.102439
|
[30] |
Wu Gang, Kong Shuai, Tang Wenyong, et al. Statistical analysis of ice loads on ship hull measured during Arctic navigations[J]. Ocean Engineering, 2021, 223: 108642. doi: 10.1016/j.oceaneng.2021.108642
|
[31] |
Downing S D, Socie D F. Simple rainflow counting algorithms[J]. International Journal of Fatigue, 1982, 4(1): 31−40. doi: 10.1016/0142-1123(82)90018-4
|