Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhang Xin,Chen Jianyu,Yang Qingjie. Analysis of spatial-temporal distribution evolution and age of existing mangrove forests in Guangdong-Hong Kong-Macao Greater Bay Area using remotely sensed data[J]. Haiyang Xuebao,2023, 45(3):113–124 doi: 10.12284/hyxb2023042
Citation: Zhang Xin,Chen Jianyu,Yang Qingjie. Analysis of spatial-temporal distribution evolution and age of existing mangrove forests in Guangdong-Hong Kong-Macao Greater Bay Area using remotely sensed data[J]. Haiyang Xuebao,2023, 45(3):113–124 doi: 10.12284/hyxb2023042

Analysis of spatial-temporal distribution evolution and age of existing mangrove forests in Guangdong-Hong Kong-Macao Greater Bay Area using remotely sensed data

doi: 10.12284/hyxb2023042
  • Received Date: 2022-04-01
  • Rev Recd Date: 2022-10-10
  • Available Online: 2022-10-24
  • Publish Date: 2023-02-01
  • Mangroves forests, as a coastal zone ecosystem dominated by mangrove plants in the tropics and subtropics, are one of the important coastal wetland types. In this paper, multi-source and multi-phase satellite data were used to form a data atlas of shoreline, reclamation, aquaculture area, mangrove distribution in the Guangdong-Hong Kong-Macao Greater Bay Area from 1969 to 2020, and the time series analysis of the evolution of mangroves in the Greater Bay Area was obtained by using the combine mangrove recognition index (CMRI). The results show that the existing mangrove forests data set can be obtained by interpreting the multi-source remote sensing data, and the CMRI time series data can establish the history of the existing mangrove forest change, and then effectively estimate the mangrove forest age. The temporal and spatial distribution of mangroves in the Guangdong-Hong Kong-Macao Greater Bay Area has undergone obvious changes, with the existing mangroves being about 3 316 hm2, and the existing forest age in various regions in the Greater Bay Area is quite different, and the overall average forest age is 20 a. In the past 50 years, the shoreline as a whole has moved towards the sea, and the changes in shoreline, reclamation, and breeding areas have significantly affected the area, spatial distribution, and age of mangroves. Artificial cultivation has been the main reason for the restoration of mangroves in the past 20 years.
  • [1]
    McKee K L, Cahoon D R, Feller I C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation[J]. Global Ecology and Biogeography, 2007, 16(5): 545−556. doi: 10.1111/j.1466-8238.2007.00317.x
    [2]
    Bouillon S, Borges A V, Castañeda-Moya E, et al. Mangrove production and carbon sinks: a revision of global budget estimates[J]. Global Biogeochemical Cycles, 2008, 22(2): GB2013.
    [3]
    Dittmar T, Hertkorn N, Kattner G, et al. Mangroves, a major source of dissolved organic carbon to the oceans[J]. Global Biogeochemical Cycles, 2006, 20(1): GB1012.
    [4]
    Feller I C, Friess D A, Krauss K W, et al. The state of the world’s mangroves in the 21st century under climate change[J]. Hydrobiologia, 2017, 803(1): 1−12. doi: 10.1007/s10750-017-3331-z
    [5]
    Bradford J B, Birdsey R A, Joyce L A, et al. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests[J]. Global Change Biology, 2008, 14(12): 2882−2897. doi: 10.1111/j.1365-2486.2008.01686.x
    [6]
    Song Conghe, Woodcock C E. A regional forest ecosystem carbon budget model: impacts of forest age structure and landuse history[J]. Ecological Modelling, 2003, 164(1): 33−47. doi: 10.1016/S0304-3800(03)00013-9
    [7]
    Chen Guangcheng, Gao Min, Pang Bopeng, et al. Top-meter soil organic carbon stocks and sources in restored mangrove forests of different ages[J]. Forest Ecology and Management, 2018, 422: 87−94. doi: 10.1016/j.foreco.2018.03.044
    [8]
    Pregitzer K S, Euskirchen E S. Carbon cycling and storage in world forests: biome patterns related to forest age[J]. Global Change Biology, 2004, 10(12): 2052−2077. doi: 10.1111/j.1365-2486.2004.00866.x
    [9]
    李森, 蔡厚才, 陈万东, 等. 海岸带生态恢复区不同林龄红树林对CH4和CO2排放通量的影响[J]. 生态环境学报, 2020, 29(12): 2414−2422.

    Li Sen, Cai Houcai, Chen Wandong, et al. Analysis on CH4 and CO2 fluxes of mangroves with different ages in the coastal ecological restoration zone[J]. Ecology and Environmental Sciences, 2020, 29(12): 2414−2422.
    [10]
    Giri C, Ochieng E, Tieszen L L, et al. Status and distribution of mangrove forests of the world using earth observation satellite data[J]. Global Ecology and Biogeography, 2011, 20(1): 154−159. doi: 10.1111/j.1466-8238.2010.00584.x
    [11]
    Bunting P, Rosenqvist A, Lucas R M, et al. The global mangrove watch—a new 2010 global baseline of mangrove extent[J]. Remote Sensing, 2018, 10(10): 1669. doi: 10.3390/rs10101669
    [12]
    Lu Ying, Wang Le. How to automate timely large-scale mangrove mapping with remote sensing[J]. Remote Sensing of Environment, 2021, 264: 112584. doi: 10.1016/j.rse.2021.112584
    [13]
    王子予, 刘凯, 彭力恒, 等. 基于Google Earth Engine的1986−2018年广东红树林年际变化遥感分析[J]. 热带地理, 2020, 40(5): 881−892.

    Wang Ziyu, Liu Kai, Peng Liheng, et al. Analysis of mangrove annual changes in Guangdong Province during 1986−2018 based on Google Earth Engine[J]. Tropical Geography, 2020, 40(5): 881−892.
    [14]
    吴培强, 马毅, 李晓敏, 等. 广东省红树林资源变化遥感监测[J]. 海洋学研究, 2011, 29(4): 16−24. doi: 10.3969/j.issn.1001-909X.2011.04.003

    Wu Peiqiang, Ma Yi, Li Xiaomin, et al. Remote sensing monitoring of the mangrove forests resources of Guangdong Province[J]. Journal of Marine Sciences, 2011, 29(4): 16−24. doi: 10.3969/j.issn.1001-909X.2011.04.003
    [15]
    Jia Mingming, Wang Zongming, Wang Chao, et al. A new vegetation index to detect periodically submerged mangrove forest using single-tide sentinel-2 imagery[J]. Remote Sensing, 2019, 11(17): 2043. doi: 10.3390/rs11172043
    [16]
    Zhang Tao, Hu Shanshan, He Yun, et al. A fine-scale mangrove map of china derived from 2-meter resolution satellite observations and field data[J]. ISPRS International Journal of Geo-Information, 2021, 10(2): 92. doi: 10.3390/ijgi10020092
    [17]
    George-Chacón S P, Mas J F, Dupuy J M, et al. Mapping the spatial distribution of stand age and aboveground biomass from Landsat time series analyses of forest cover loss in tropical dry forests[J]. Remote Sensing in Ecology and Conservation, 2022, 8(3): 347−361. doi: 10.1002/rse2.247
    [18]
    Zhang Quanfa, Pavlic G, Chen Wenjun, et al. Deriving stand age distribution in boreal forests using SPOT VEGETATION and NOAA AVHRR imagery[J]. Remote Sensing of Environment, 2004, 91(3/4): 405−418.
    [19]
    Razak J A B A, Shariff A R B M, Ahmad N B, et al. Mapping rubber trees based on phenological analysis of Landsat time series data-sets[J]. Geocarto International, 2018, 33(6): 627−650.
    [20]
    张文秋, 房磊, 杨健, 等. 基于Landsat时间序列的湖南省会同县杉木人工林干扰历史重建与林龄估算[J]. 生态学杂志, 2018, 37(11): 3467−3479. doi: 10.13292/j.1000-4890.201811.033

    Zhang Wenqiu, Fang Lei, Yang Jian, et al. Reconstruction of stand-replacement disturbance and stand age of Chinese fir plantation based on a Landsat time series in Huitong County, Hunan[J]. Chinese Journal of Ecology, 2018, 37(11): 3467−3479. doi: 10.13292/j.1000-4890.201811.033
    [21]
    Gupta K, Mukhopadhyay A, Giri S, et al. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery[J]. MethodsX, 2018, 5: 1129−1139. doi: 10.1016/j.mex.2018.09.011
    [22]
    林玉英, 胡喜生, 邱荣祖, 等. 基于Landsat影像的NDVI对植被与影响因子交互耦合的响应[J]. 农业机械学报, 2018, 49(10): 212−219. doi: 10.6041/j.issn.1000-1298.2018.10.024

    Lin Yuying, Hu Xisheng, Qiu Rongzu, et al. Responses of landsat-based NDVI to interaction of vegetation and influencing factors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 212−219. doi: 10.6041/j.issn.1000-1298.2018.10.024
    [23]
    唐少飞. 中国东北典型针叶林林龄信息提取及其对树种分类的影响研究[D]. 南京: 南京大学, 2020.

    Tang Shaofei. Study on extraction of stand age information of typical coniferous forests in Northeast China and its impact on tree species classification[D]. Nanjing: Nanjing University, 2020.
    [24]
    国家海洋局908专项办公室. 我国近海海洋综合调查与评价专项: 海岛海岸带卫星遥感调查技术规程[M]. 北京: 海洋出版社, 2005.

    State Oceanic 908 of the State Oceanic Administration. the Investigation and the Evaluation of the State’s Coastal Sea: Technical Specification for Coastal Zone Investigation[M]. Beijing: China Ocean Press, 2005.
    [25]
    浙江省质量技术监督局. 海岸线调查统计技术规范: DB33/T 2106−2018[S]. 杭州: 浙江省标准化研究院, 2018.

    Quality and Technology Supervision of Zhejiang Province. Specification for coastline survey statistics: DB33/T 2106−2018[S]. Hangzhou: Zhejiang Institute of Standardization, 2018.
    [26]
    侯西勇, 毋亭, 侯婉, 等. 20世纪40年代初以来中国大陆海岸线变化特征[J]. 中国科学: 地球科学, 2016, 59(8): 1791−1802.

    Hou Xiyong, Wu Ting, Hou Wan, et al. Characteristics of coastline changes in mainland China since the early 1940s[J]. Science China: Earth Sciences, 2016, 59(8): 1791−1802.
    [27]
    高志强, 刘向阳, 宁吉才, 等. 基于遥感的近30 a中国海岸线和围填海面积变化及成因分析[J]. 农业工程学报, 2014, 30(12): 140−147. doi: 10.3969/j.issn.1002-6819.2014.12.017

    Gao Zhiqiang, Liu Xiangyang, Ning Jicai, et al. Analysis on changes in coastline and reclamation area and its causes based on 30-year satellite data in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(12): 140−147. doi: 10.3969/j.issn.1002-6819.2014.12.017
    [28]
    李矿明, 邓小飞, 韩维栋. 广东江门沿海红树林及其它湿地植被[J]. 中南林业调查规划, 2006, 25(1): 35−38. doi: 10.3969/j.issn.1003-6075.2006.01.010

    Li Kuangming, Deng Xiaofei, Han Weidong. Guangdong Jiangmen coastal mangrove and other wetland vegetation[J]. Central South Forest Inventory and Planning, 2006, 25(1): 35−38. doi: 10.3969/j.issn.1003-6075.2006.01.010
    [29]
    于凌云, 林绅辉, 焦学尧, 等. 粤港澳大湾区红树林湿地面临的生态问题与保护对策[J]. 北京大学学报(自然科学版), 2019, 55(4): 782−790. doi: 10.13209/j.0479-8023.2019.051

    Yu Lingyun, Lin Shenhui, Jiao Xueyao, et al. Ecological problems and protection countermeasures of mangrove wetland in Guangdong-Hong Kong-Macao greater bay area[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(4): 782−790. doi: 10.13209/j.0479-8023.2019.051
    [30]
    战国强. 珠江口红树林湿地保护与修复的基本思路[J]. 林业与环境科学, 2008, 24(6): 70−74. doi: 10.3969/j.issn.1006-4427.2008.06.015

    Zhan Guoqiang. Basic thought on mangrove wetland conservation planning in Pearl River Estuary[J]. Forestry and Environmental Science, 2008, 24(6): 70−74. doi: 10.3969/j.issn.1006-4427.2008.06.015
    [31]
    李海生, 吴灿雄, 欧阳美霞, 等. 广州市南沙区红树林资源现状与保护[J]. 湿地科学, 2020, 18(2): 158−165. doi: 10.13248/j.cnki.wetlandsci.2020.02.004

    Li Haisheng, Wu Canxiong, Ouyang Meixia, et al. The current status and conservation of mangrove resources in Nansha District of Guangzhou[J]. Wetland Science, 2020, 18(2): 158−165. doi: 10.13248/j.cnki.wetlandsci.2020.02.004
    [32]
    陈一萌, 杨阳. 惠州市红树林湿地资源及其保护[J]. 热带地理, 2010, 30(1): 34−39. doi: 10.3969/j.issn.1001-5221.2010.01.007

    Chen Yimeng, Yang Yang. Mangrove wetland resources and their protection scheme in Huizhou City[J]. Tropical Geography, 2010, 30(1): 34−39. doi: 10.3969/j.issn.1001-5221.2010.01.007
    [33]
    李海生. 深圳龙岗的红树林[J]. 广东教育学院学报, 2006, 26(3): 67−69.

    Li Haisheng. The mangrove of Longgang, Shenzhen[J]. Journal of Guangdong Education Institute, 2006, 26(3): 67−69.
    [34]
    王金华, 温钊鹏. 粤港澳大湾区河口海岸生态修复策略研究——以东莞市滨海湾新区为例[J]. 海洋开发与管理, 2020, 37(6): 34−39. doi: 10.3969/j.issn.1005-9857.2020.06.007

    Wang Jinhua, Weng Zhaopeng. The ecological restoration strategy of estuary coastal zone in Guangdong-Hong Kong-Macao Greater Bay Area: take Dongguan Marina Bay New Area as an example[J]. Ocean Development and Management, 2020, 37(6): 34−39. doi: 10.3969/j.issn.1005-9857.2020.06.007
    [35]
    何锐荣. 澳门红树林及其保护研究[D]. 广州: 暨南大学, 2009.

    He Ruirong. Study on mangrove and its conservational strategy in Macao, China[D]. Guangzhou: Jinan University, 2009.
    [36]
    Brown M E, Pinzon J E, Didan K, et al. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1787−1793. doi: 10.1109/TGRS.2005.860205
    [37]
    吴庭天, 丁山, 陈宗铸, 等. 基于LUCC和景观格局变化的海南东寨港红树林湿地动态研究[J]. 林业科学研究, 2020, 33(5): 154−162.

    Wu Tingtian, Ding Shan, Chen Zongzhu, et al. Dynamic analysis of mangrove wetlands based on LUCC and landscape pattern change in Dongzhai Port[J]. Forest Research, 2020, 33(5): 154−162.
  • Relative Articles

    [1]Qu Yuwei, Guo Meirong, Shui Bonian, Zhu Daqian, Zhang Na, Ma Yadong, Feng Jiayu, Hu Chengye. The study of trophic niche and potential food sources of benthic animals in mangrove from Yanpu Bay[J]. Haiyang Xuebao, 2025, 47(3): 51-61. doi: 10.12284/hyxb2025034
    [2]Lei Jiaxin, Zhang Rong, Chen Yongping, Wang Yuan, Yao Peng. Numerical simulation on the impact of mangroves on wave pressure on vertical sea dikes[J]. Haiyang Xuebao, 2024, 46(2): 117-130. doi: 10.12284/hyxb2024011
    [3]Luo Jinxuan, Tian Yichao, Zhang Qiang, Tao Jin, Huang Youju, Wang Jingzhen, Zhang Yali, Huang Zhuomei, Deng Jingwen, Tan Yuxin. Estimation of aboveground biomass of mangrove forest using UAV-LiDAR[J]. Haiyang Xuebao, 2023, 45(8): 108-119. doi: 10.12284/hyxb2023088
    [4]Feng Xi, Ding Zhiwei, Feng Hui, Zhang Wei, Chu Ao, Zhang Chi. Responses of tidal-current-asymmetry to shoreline variation in radial sand ridges in the South Yellow Sea[J]. Haiyang Xuebao, 2022, 44(6): 1-9. doi: 10.12284/hyxb2022049
    [5]Zhou Zaiming, Chen Benqing, Xu Ran, Fang Wei. Identification of the mangrove species using UAV hyperspectral images: A case study of Zhangjiangkou mangrove national nature reserve[J]. Haiyang Xuebao, 2021, 43(9): 137-145. doi: 10.12284/hyxb2021136
    [6]Wang Yali, Zhang Fenfen, Chen Xiaogang, Li Linwei, Wang Xilong, Lao Yanling, Du Jinzhou. Influence of submarine groundwater discharge in the blue carbon budget of typical mangrove: A case study from the Zhenzhu Bay, Guangxi[J]. Haiyang Xuebao, 2020, 42(10): 37-46. doi: 10.3969/j.issn.0253-4193.2020.10.004
    [7]Liang Chao, Liu Li, Liu Jianqiang, Zou Bin, Zou Yarong, Cui Songxue. Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data[J]. Haiyang Xuebao, 2020, 42(4): 104-112. doi: 10.3969/j.issn.0253-4193.2020.04.012
    [8]Qu Baoxiao, Song Jinming, Yuan Huamao. Historical evolutions of metal contamination in the Guangdong-Hong Kong-Macao Greater Bay Area: A risk assessment based on the fuzzy comprehensive assessment in the Daya Bay[J]. Haiyang Xuebao, 2020, 42(10): 59-69. doi: 10.3969/j.issn.0253-4193.2020.10.006
    [9]Bai Yuchuan, Wen Zhichao, Xu Haijue. Simulation the response and predict the effect of concentrated-heated brine discharged into the Bohai Bay under reclamation condition[J]. Haiyang Xuebao, 2019, 41(3): 62-75. doi: 10.3969/j.issn.0253-4193.2019.03.007
    [10]Zhao Qian, Chen Yue, Chen Yuan, Ding Dewen, Hu Zhanming. Current characteristics and its response to large-scale mariculture in Qinhuangdao coastal area based on in-situ observation[J]. Haiyang Xuebao, 2019, 41(6): 23-36. doi: 10.3969/j.issn.0253-4193.2019.06.003
    [11]Suo Anning, Wang Peng, Yuan Daowei, Yu Yonghai, Zhang Minghui. Study on monitoring and analysis of existing sea reclamation resource based on high resolution satellite remote sensing imagery-A case in south coast of Yingkou[J]. Haiyang Xuebao, 2016, 38(9): 54-63. doi: 10.3969/j.issn.0253-4193.2016.09.006
    [12]Jiang Mingguo, Gan Guanghua, Yang Lifang, Li Xini, Yang Guiliu, Tuo Li, Sun Chenghang, Huang Ling, Lan Jinzhi. In situ isolation of actinomycetes and screening bioactive potential from mangrove rhizosphere soils in Guangxi[J]. Haiyang Xuebao, 2015, 37(2): 55-64. doi: 10.3969/j.issn.0253-4193.2015.02.006
    [13]Xia Peng, Meng Xianwei, Feng Aiping, Li Zhen. Historical retrospection on mangrove development using stable carbon isotopes and pollen analysis,and its response to climate change and human activity[J]. Haiyang Xuebao, 2015, 37(3): 77-85. doi: 10.3969/j.issn.0253-4193.2015.03.008
    [14]YANG Juan, JAY Gao, LIU Baolin, ALEN Cheung, WANG Duo, ZHANG Wei. Edge effects of mangrove boundaries and their impact on organic carbon pool along the coast of Leizhou Peninsula[J]. Haiyang Xuebao, 2012, 34(5): 161-168.
    [15]GUO Yu-qing. The study on the community of free-living marine nematodes in Fenglin mangrove wetlands, Xiamen, China[J]. Haiyang Xuebao, 2008, 30(4): 147-153.
    [16]CAI Li-zhe, MA Li, YUAN Dong-xing, ZHANG Jun, ZHENG Wen-jiao, GAO Yang, LU Zhi-qiang. Polycyclic aromatic hydrocarbons in zoobenthos in mangrove swamp in the Jiulong River Estuary[J]. Haiyang Xuebao, 2005, 27(5): 112-118.
    [17]LIN Peng, ZHANG Yu-bin, DENG Ai-ying, ZHUANG Tie-cheng. Microflora and antimicrobial activities of soil microorganisms in mangrove forests in the Jiulong Estuary, China[J]. Haiyang Xuebao, 2005, 27(3): 133-141.
    [18]LIU Wei-gang, LIN Yi-ming, CHEN Zhen-fen, LIN Peng. Nutrient composition of four algae in Fujian mangrove areas[J]. Haiyang Xuebao, 2002, 24(3): 88-93.
    [19]LIU Wei-gang, LIN Yi-ming, CHEN Zhen-fen, LIN Peng. Distribution and seasonal change of algae in Fujian mangrove areas[J]. Haiyang Xuebao, 2001, 23(3): 78-86.
    [20]Zhang Yulan, Feng Weiqing, Wang Kaifa, Zhang Weidong, Hua Di. The evolution of mangrove forest on the basis of palynological study of Holocene in Hainan Island[J]. Haiyang Xuebao, 2000, 22(3): 117-122.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.6 %FULLTEXT: 16.6 %META: 72.2 %META: 72.2 %PDF: 11.2 %PDF: 11.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.0 %其他: 7.0 %其他: 1.4 %其他: 1.4 %Absecon: 0.1 %Absecon: 0.1 %Bacoor: 0.3 %Bacoor: 0.3 %Central District: 1.2 %Central District: 1.2 %China: 0.1 %China: 0.1 %Hyōgo: 0.1 %Hyōgo: 0.1 %India: 0.2 %India: 0.2 %Kennedy Town: 0.5 %Kennedy Town: 0.5 %Saitama: 0.1 %Saitama: 0.1 %San Diego: 0.1 %San Diego: 0.1 %Singapore: 0.2 %Singapore: 0.2 %[]: 0.1 %[]: 0.1 %上海: 5.0 %上海: 5.0 %东京: 0.2 %东京: 0.2 %东莞: 0.7 %东莞: 0.7 %中卫: 0.2 %中卫: 0.2 %中山: 0.3 %中山: 0.3 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %伊斯特利: 0.1 %伊斯特利: 0.1 %休斯顿: 0.1 %休斯顿: 0.1 %佛山: 0.2 %佛山: 0.2 %保定: 0.2 %保定: 0.2 %兰州: 0.3 %兰州: 0.3 %加州: 0.1 %加州: 0.1 %北京: 2.7 %北京: 2.7 %十堰: 0.1 %十堰: 0.1 %南京: 1.2 %南京: 1.2 %南宁: 0.3 %南宁: 0.3 %南昌: 0.7 %南昌: 0.7 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %厦门: 0.8 %厦门: 0.8 %台北: 1.4 %台北: 1.4 %台州: 0.5 %台州: 0.5 %合肥: 0.3 %合肥: 0.3 %吉林: 0.1 %吉林: 0.1 %哈勒姆: 0.1 %哈勒姆: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大同: 0.2 %大同: 0.2 %大连: 0.3 %大连: 0.3 %天水围: 0.5 %天水围: 0.5 %天津: 0.3 %天津: 0.3 %宁波: 0.1 %宁波: 0.1 %宣城: 0.6 %宣城: 0.6 %密蘇里城: 0.2 %密蘇里城: 0.2 %岳阳: 0.1 %岳阳: 0.1 %布鲁克林区: 0.1 %布鲁克林区: 0.1 %常州: 0.2 %常州: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 4.5 %广州: 4.5 %弗吉: 0.3 %弗吉: 0.3 %弗里蒙特: 0.1 %弗里蒙特: 0.1 %张家口: 1.0 %张家口: 1.0 %德波: 0.5 %德波: 0.5 %德罕: 0.1 %德罕: 0.1 %恩施: 0.1 %恩施: 0.1 %惠州: 0.1 %惠州: 0.1 %意法半: 0.2 %意法半: 0.2 %成都: 0.5 %成都: 0.5 %扬州: 0.5 %扬州: 0.5 %新加坡: 0.1 %新加坡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.7 %昆明: 0.7 %曼彻斯特: 0.1 %曼彻斯特: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.3 %杭州: 1.3 %柳州: 0.7 %柳州: 0.7 %桂林: 0.3 %桂林: 0.3 %武汉: 0.8 %武汉: 0.8 %氹仔: 0.1 %氹仔: 0.1 %汉诺威: 0.1 %汉诺威: 0.1 %汕头: 0.1 %汕头: 0.1 %汕尾: 0.1 %汕尾: 0.1 %江门: 0.1 %江门: 0.1 %沈阳: 0.1 %沈阳: 0.1 %河源: 0.2 %河源: 0.2 %波士顿: 0.1 %波士顿: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.6 %海口: 0.6 %淄博: 0.1 %淄博: 0.1 %淮南: 0.2 %淮南: 0.2 %深圳: 1.8 %深圳: 1.8 %温州: 0.4 %温州: 0.4 %湖州: 0.2 %湖州: 0.2 %湛江: 0.8 %湛江: 0.8 %漯河: 1.0 %漯河: 1.0 %漳州: 0.3 %漳州: 0.3 %澳门: 0.3 %澳门: 0.3 %烟台: 0.1 %烟台: 0.1 %珠海: 0.7 %珠海: 0.7 %琼海: 0.2 %琼海: 0.2 %百色: 0.2 %百色: 0.2 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %肇庆: 0.1 %肇庆: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 32.9 %芒廷维尤: 32.9 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %莱斯特: 0.1 %莱斯特: 0.1 %葵涌: 0.3 %葵涌: 0.3 %襄阳: 0.1 %襄阳: 0.1 %西宁: 5.9 %西宁: 5.9 %西安: 0.1 %西安: 0.1 %诺沃克: 0.3 %诺沃克: 0.3 %运城: 0.3 %运城: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 4.6 %郑州: 4.6 %重庆: 0.1 %重庆: 0.1 %钦州: 0.2 %钦州: 0.2 %长春: 0.6 %长春: 0.6 %长沙: 1.0 %长沙: 1.0 %阜阳: 0.1 %阜阳: 0.1 %防城港: 0.1 %防城港: 0.1 %阳江: 0.3 %阳江: 0.3 %青岛: 0.7 %青岛: 0.7 %韶关: 0.1 %韶关: 0.1 %香港: 0.1 %香港: 0.1 %香港岛: 0.5 %香港岛: 0.5 %马鞍山: 0.1 %马鞍山: 0.1 %高雄: 0.2 %高雄: 0.2 %黄冈: 0.1 %黄冈: 0.1 %其他其他AbseconBacoorCentral DistrictChinaHyōgoIndiaKennedy TownSaitamaSan DiegoSingapore[]上海东京东莞中卫中山乌鲁木齐伊斯特利休斯顿佛山保定兰州加州北京十堰南京南宁南昌南通南阳厦门台北台州合肥吉林哈勒姆哈尔滨唐山嘉兴大同大连天水围天津宁波宣城密蘇里城岳阳布鲁克林区常州平顶山广州弗吉弗里蒙特张家口德波德罕恩施惠州意法半成都扬州新加坡无锡昆明曼彻斯特朝阳杭州柳州桂林武汉氹仔汉诺威汕头汕尾江门沈阳河源波士顿济南海口淄博淮南深圳温州湖州湛江漯河漳州澳门烟台珠海琼海百色石家庄福州秦皇岛肇庆舟山芒廷维尤芝加哥苏州莱斯特葵涌襄阳西宁西安诺沃克运城邯郸郑州重庆钦州长春长沙阜阳防城港阳江青岛韶关香港香港岛马鞍山高雄黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (1054) PDF downloads(166) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return