Citation: | Ren Chunyu,Gao Jianhua,Liu Tao, et al. Multi-timescale variation of temperature fronts in the Yellow Sea during winter and spring and its main controlling factors analysis[J]. Haiyang Xuebao,2023, 45(4):31–45 doi: 10.12284/hyxb2023023 |
[1] |
汤毓祥, 郑义芳. 关于黄、东海海洋锋的研究[J]. 海洋通报, 1990, 9(5): 89−96.
Tang Yuxiang, Zheng Yifang. Research on fronts in East China Sea[J]. Marine Science Bulletin, 1990, 9(5): 89−96.
|
[2] |
冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999.
Feng Shizuo, Li Fengqi, Li Shaojing. An Introduction to Marine Science[M]. Beijing: Higher Education Press, 1999.
|
[3] |
Lohmann R, Belkin I M. Organic pollutants and ocean fronts across the Atlantic Ocean: a review[J]. Progress in Oceanography, 2014, 128: 172−184. doi: 10.1016/j.pocean.2014.08.013
|
[4] |
Chen Dake, Liu W T, Tang Wenqing, et al. Air-sea interaction at an oceanic front: implications for frontogenesis and primary production[J]. Geophysical Research Letters, 2003, 30(14): 1745.
|
[5] |
宁修仁, 史君贤, 蔡昱明, 等. 长江口和杭州湾海域生物生产力锋面及其生态学效应[J]. 海洋学报, 2004, 26(6): 96−106.
Ning Xiuren, Shi Junxian, Cai Yuming, et al. Biological productivity front in the Changjiang Estuary and the Hangzhou Bay and its ecological effects[J]. Haiyang Xuebao, 2004, 26(6): 96−106.
|
[6] |
艾乔, 石勇, 高建华, 等. 辽东半岛东岸近海泥区悬沙浓度的时空分布及控制因素分析[J]. 海洋学报, 2019, 41(1): 121−133.
Ai Qiao, Shi Yong, Gao Jianhua, et al. Spatio-temporal distribution and control factors of surface suspended sediment concentration in the mud deposition along eastern coast offshore of the Liaodong Peninsula[J]. Haiyang Xuebao, 2019, 41(1): 121−133.
|
[7] |
Zhong Yi, Qiao Lulu, Song Dehai, et al. Impact of cold water mass on suspended sediment transport in the South Yellow Sea[J]. Marine Geology, 2020, 428: 106244. doi: 10.1016/j.margeo.2020.106244
|
[8] |
Zhou Feng, Xue Huijie, Huang Daji, et al. Cross-shelf exchange in the shelf of the East China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 1545−1572. doi: 10.1002/2014JC010567
|
[9] |
Owen R W. Fronts and eddies in the sea: mechanisms, interactions and biological effects[M]//Longhurst A R. Analysis of Marine Ecosystems. London: Academic Press, 1981: 197−233.
|
[10] |
任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 552−563. doi: 10.11867/j.issn.1001-8166.2015.05.0552
Ren Shihe, Wang Hui, Liu Na. Review of ocean front in Chinese marginal seas and frontal forecasting[J]. Advances in Earth Science, 2015, 30(5): 552−563. doi: 10.11867/j.issn.1001-8166.2015.05.0552
|
[11] |
Shi Y, Gao Jianhua, Sheng Hui, et al. Cross-front sediment transport induced by quick oscillation of the Yellow Sea Warm Current: evidence from the sedimentary record[J]. Geophysical Research Letters, 2019, 46(1): 226−234. doi: 10.1029/2018GL080751
|
[12] |
吴德星, 兰健. 中国东部陆架边缘海海洋物理环境演变及其环境效应[J]. 地球科学进展, 2006, 21(7): 667−672.
Wu Dexing, Lan Jian. Marine physical variations in eastern marginal seas of China and their environmental impacts[J]. Advances in Earth Science, 2006, 21(7): 667−672.
|
[13] |
Ichikawa H, Beardsley R C. The current system in the Yellow and East China Seas[J]. Journal of Oceanography, 2002, 58(1): 77−92. doi: 10.1023/A:1015876701363
|
[14] |
朱伟军, 李莹. 冬季北太平洋风暴轴的年代际变化特征及其可能影响机制[J]. 气象学报, 2010, 68(4): 477−486.
Zhu Weijun, Li Ying. Inter-decadal variation characteristics of winter North Pacific storm tracks and its possible influencing mechanism[J]. Acta Meteorologica Sinica, 2010, 68(4): 477−486.
|
[15] |
Taguchi B, Xie Shangping, Schneider N, et al. Decadal variability of the kuroshio extension: observations and an eddy-resolving model hindcast[J]. Journal of Climate, 2007, 20(11): 2357−2377. doi: 10.1175/JCLI4142.1
|
[16] |
Li Chunyan, Nelson J R, Koziana J V. Cross-shelf passage of coastal water transport at the South Atlantic Bight observed with MODIS Ocean Color/SST[J]. Geophysical Research Letters, 2003, 30(5): 1257.
|
[17] |
Wang Chenghao, Liu Zhiqiang, Harris C K, et al. The impact of winter storms on sediment transport through a narrow strait, Bohai, China[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2020JC016069.
|
[18] |
Wu Xiaodong, Voulgaris G, Kumar N. Shelf cross-shore flows under storm-driven conditions: role of stratification, shoreline orientation, and bathymetry[J]. Journal of Physical Oceanography, 2018, 48(11): 2533−2553. doi: 10.1175/JPO-D-17-0090.1
|
[19] |
Lima E, Sun Xin, Dong Junyu, et al. Learning and transferring convolutional neural network knowledge to ocean front recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 354−358. doi: 10.1109/LGRS.2016.2643000
|
[20] |
Sun Jianyuan, Zhong Guoqiang, Dong Junyu, et al. Cooperative profit random forests with application in ocean front recognition[J]. IEEE Access, 2017, 5: 1398−1408. doi: 10.1109/ACCESS.2017.2656618
|
[21] |
Qiao Baiyou, Wu Zhongqiang, Tang Zhong, et al. Sea surface temperature prediction approach based on 3D CNN and LSTM with attention mechanism[C]//Proceedings of the 23rd International Conference on Advanced Communication Technology (ICACT). PyeongChang: IEEE, 2021.
|
[22] |
Ham Y G, Kim J H, Luo Jingjia. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568−572. doi: 10.1038/s41586-019-1559-7
|
[23] |
Tang Meng, Liu Yimin, Durlofsky L J. A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems[J]. Journal of Computational Physics, 2020, 413: 109456. doi: 10.1016/j.jcp.2020.109456
|
[24] |
刘传玉, 王凡. 黄海暖流源区海表面温度锋面的结构及季节内演变[J]. 海洋科学, 2009, 33(7): 87−93.
Liu Chuanyu, Wang Fan. Distributions and intra-seasonal evolutions of the sea surface thermal fronts in the Yellow Sea Warm Current origin area[J]. Marine Sciences, 2009, 33(7): 87−93.
|
[25] |
Poitevin C, Wöppelmann G, Raucoules D, et al. Vertical land motion and relative sea level changes along the coastline of Brest (France) from combined space-borne geodetic methods[J]. Remote Sensing of Environment, 2019, 222: 275−285. doi: 10.1016/j.rse.2018.12.035
|
[26] |
Duan Haiqin, Xu Jingping, Wu Xiao, et al. Periodic oscillation of sediment transport influenced by winter synoptic events, Bohai Strait, China[J]. Water, 2020, 12(4): 986. doi: 10.3390/w12040986
|
[27] |
Wu Xiao, Wu Hui, Wang Houjie, et al. Novel, repeated surveys reveal new insights on sediment flux through a Narrow Strait, Bohai, China[J]. Journal of Geophysical Research: Oceans, 2019, 124(10): 6927−6941. doi: 10.1029/2019JC015293
|
[28] |
Lellouche J M, Greiner E, Le Galloudec O, et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system[J]. Ocean Science, 2018, 14(5): 1093−1126. doi: 10.5194/os-14-1093-2018
|
[29] |
Lellouche J M, Le Galloudec O, Drévillon M, et al. Evaluation of global monitoring and forecasting systems at Mercator Océan[J]. Ocean Science, 2013, 9(1): 57−81. doi: 10.5194/os-9-57-2013
|
[30] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
|
[31] |
Molina M O, Gutiérrez C, Sánchez E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset[J]. International Journal of Climatology, 2021, 41(10): 4864−4878. doi: 10.1002/joc.7103
|
[32] |
Hannachi A. A primer for EOF analysis of climate data[D]. Reading: Department of Meteorology, University of Reading, 2004.
|
[33] |
Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1−41. doi: 10.1142/S1793536909000047
|
[34] |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229−1251.
Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229−1251.
|
[35] |
Han Mingxu, Feng Yuan, Zhao Xueli, et al. A convolutional neural network using surface data to predict subsurface temperatures in the Pacific Ocean[J]. IEEE Access, 2019, 7: 172816−172829. doi: 10.1109/ACCESS.2019.2955957
|
[36] |
Aires F, Boucher E, Pellet V. Convolutional neural networks for satellite remote sensing at coarse resolution. Application for the SST retrieval using IASI[J]. Remote Sensing of Environment, 2021, 263: 112553. doi: 10.1016/j.rse.2021.112553
|
[37] |
Wu Hongcai, Yang Qinli, Liu Jiaming, et al. A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China[J]. Journal of Hydrology, 2020, 584: 124664. doi: 10.1016/j.jhydrol.2020.124664
|
[38] |
周锋, 黄大吉, 万瑞景, 等. 南黄海西北部夏季潮锋的观测和分析[J]. 海洋学报, 2008, 30(3): 9−15.
Zhou Feng, Huang Daji, Wan Ruijing, et al. Observations and analysis of tidal fronts in the southwestern Huanghai Sea[J]. Haiyang Xuebao, 2008, 30(3): 9−15.
|
[39] |
赵保仁. 黄海冷水团锋面与潮混合[J]. 海洋与湖沼, 1985, 16(6): 451−460.
Zhao Baoren. The fronts of the Huanghai Sea cold water mass induced by tidal mixing[J]. Oceanologia et Limnologia Sinica, 1985, 16(6): 451−460.
|
[40] |
Wang Fan, Liu Chuanyu, Meng Qingjia. Effect of the Yellow Sea Warm Current fronts on the westward shift of the Yellow Sea Warm Tongue in winter[J]. Continental Shelf Research, 2012, 45: 98−107. doi: 10.1016/j.csr.2012.06.005
|
[41] |
Xu Xiaomei, Gao Jianhua, Shi Yong, et al. Cross-front transport triggered by winter storms around the Shandong Peninsula, China[J]. Frontiers in Marine Science, 2022, 9: 975504. doi: 10.3389/fmars.2022.975504
|
[42] |
成科扬, 王宁, 师文喜, 等. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208−1217.
Cheng Keyang, Wang Ning, Shi Wenxi, et al. Research advances in the interpretability of deep learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208−1217.
|
[43] |
Sundararajan M, Taly A, Yan Qiqi. Axiomatic attribution for deep networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney: JMLR, 2017.
|
[44] |
Mudrakarta P K, Taly A, Sundararajan M, et al. Did the model understand the question?[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne: ACL, 2018.
|
[45] |
Smilkov D, Thorat N, Kim B, et al. SmoothGrad: removing noise by adding noise[EB/OL]. (2017‒06‒12)[2022‒07‒17]. https://arxiv.org/abs/1706.03825.
|
[46] |
Shi Yong, Xu Xiaomei, Sheng Hui, et al. Neglected role of continental circulation in cross-shelf sediment transport: implications for paleoclimate reconstructions[J]. Marine Geology, 2022, 443: 106703. doi: 10.1016/j.margeo.2021.106703
|
[47] |
石勇. 北黄海西部细颗粒物质的跨锋面输运及其沉积环境效应[D]. 南京: 南京大学, 2020.
Shi Yong. Cross-front transport of fine sediment in the western North Yellow Sea and its sedimentary effects[D]. Nanjing: Nanjing University, 2020.
|
[48] |
Roundy P E, Kiladis G N. Observed relationships between oceanic Kelvin waves and atmospheric forcing[J]. Journal of Climate, 2006, 19(20): 5253−5272. doi: 10.1175/JCLI3893.1
|
[49] |
Jacobs G A, Preller R H, Riedlinger S K, et al. Coastal wave generation in the Bohai Bay and propagation along the Chinese coast[J]. Geophysical Research Letters, 1998, 25(6): 777−780. doi: 10.1029/97GL03636
|
[50] |
Wu Hui. Cross-shelf penetrating fronts: a response of buoyant coastal water to ambient pycnocline undulation[J]. Journal of Geophysical Research: Oceans, 2015, 120(7): 5101−5119. doi: 10.1002/2014JC010686
|
[51] |
Pi Zhong, Chang Fengming, Li Tiegang, et al. Sea surface temperature evolution in the Yellow Sea Warm Current pathway and its teleconnection with high and low latitude forcing during the mid-late Holocene[J]. Journal of Oceanology and Limnology, 2022, 40(1): 93−109. doi: 10.1007/s00343-021-0219-6
|
[52] |
Mantua N J, Hare S R, Zhang Yuan, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1069−1080. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
|
[53] |
Power S, Casey T, Folland C, et al. Inter-decadal modulation of the impact of ENSO on Australia[J]. Climate Dynamics, 1999, 15(5): 319−324. doi: 10.1007/s003820050284
|
[54] |
Liu Zhiqiang, Gan Jianping. Modeling study of variable upwelling circulation in the East China Sea: response to a coastal promontory[J]. Journal of Physical Oceanography, 2014, 44(4): 1078−1094. doi: 10.1175/JPO-D-13-0170.1
|
[55] |
Zheng Xiangyang, Zhang Hua, Li Yanfang, et al. The features and mechanisms of the North Shandong Coastal Current: a case study in 2014[J]. Journal of Oceanography, 2021, 77(4): 631−646. doi: 10.1007/s10872-021-00597-3
|