Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
Yang Guang,Ren Chunyu,Shi Yong, et al. Variations in grain size composition and regional sedimentary effects in the north branch of Huanghe River distal mud induced by climate changes and human activities[J]. Haiyang Xuebao,2023, 45(2):74–84 doi: 10.12284/hyxb2023021
Citation: Yang Guang,Ren Chunyu,Shi Yong, et al. Variations in grain size composition and regional sedimentary effects in the north branch of Huanghe River distal mud induced by climate changes and human activities[J]. Haiyang Xuebao,2023, 45(2):74–84 doi: 10.12284/hyxb2023021

Variations in grain size composition and regional sedimentary effects in the north branch of Huanghe River distal mud induced by climate changes and human activities

doi: 10.12284/hyxb2023021
  • Received Date: 2022-08-04
  • Rev Recd Date: 2022-09-02
  • Available Online: 2023-02-03
  • Publish Date: 2023-02-01
  • Paleoclimate and paleoenvironment reconstruction based on shelf mud deposits remain controversial due to the complexity of coastal dynamic conditions. In this paper, three sediment cores distributed along the sediment transport path in the North Yellow Sea were collected, and the sediment grain size composition, end member, winter storms and Yellow Sea Warm Current strength variation were also analyzed. Based on above analysis, the response mechanism and intensity of different sediment grain size end member to winter storms and Yellow Sea Warm Current were discussed, and sedimentary effect in different regions caused by the above changes was also revealed. The results show that sediment composition in the north branch of Huanghe River distal mud is dominated by the natural condition and human activity over the past 100 years, respectively. Due to the impact of human activities on the sediment flux and composition of the Huanghe River into the sea began to enhance since 1980, and the natural evolution information was destroyed. In addition, through comparing sediment end member of different cores along the sediment transport pathway, the discrepancy in response mechanism and intensity of different end member to winter storms and the Yellow Sea Warm Current were observed before 1980, which reflected significant regional sedimentation effect. Further analysis demonstrated that, the coarse-grained end member is dominated by the winter storm, reflecting intensity of cross-front transport from the north Shandong Peninsula; and the fine-grained end member is controlled by the Yellow Sea Warm Current, representing the long distance transport from the offshore mud patch of the western North Yellow Sea to the eastern coast of the Liaodong Peninsula. Above conclusions indicated that, the sediment grain size is a robust tool for paleoclimate and paleoenvironment reconstruction; however, the utility of sensitive grain size should be based on sediment source and the characteristics of the sediment hydrodynamic environment analysis, and selection of the sensitive grain size and its implication should be careful.
  • loading
  • [1]
    杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2): 81−90.

    Yang Zuosheng, Guo Zhigang, Wang Zhaoxiang, et al. Basic pattern of transport of suspended matter from the Yellow Sea and East China Sea to the eastern deep seas[J]. Haiyang Xuebao, 1992, 14(2): 81−90.
    [2]
    Hu Bangqi, Yang Zuosheng, Zhao Meixun, et al. Grain size records reveal variability of the East Asian winter monsoon since the Middle Holocene in the Central Yellow Sea mud area, China[J]. Science China Earth Sciences, 2012, 55(10): 1656−1668. doi: 10.1007/s11430-012-4447-7
    [3]
    Xiao Shangbin, Li Anchun, Liu J P, et al. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2/4): 293−304.
    [4]
    Xiang Rong, Yang Zuosheng, Saito Y, et al. East Asia winter monsoon changes inferred from environmentally sensitive grain-size component records during the last 2300 years in mud area southwest off Cheju Island, ECS[J]. Science in China Series D, 2006, 49(6): 604−614. doi: 10.1007/s11430-006-0604-1
    [5]
    Wang Linmiao, Li Guangxue, Gao Fei, et al. Sediment records of environmental changes in the south end of the Zhejiang-Fujian coastal mud area during the past 100 years[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(4): 899−908. doi: 10.1007/s00343-014-3220-5
    [6]
    Zhao Shaohua, Cai Feng, Liu Zhifei, et al. Disturbed climate changes preserved in terrigenous sediments associated with anthropogenic activities during the last century in the Taiwan Strait, East Asia[J]. Marine Geology, 2021, 437: 106499. doi: 10.1016/j.margeo.2021.106499
    [7]
    Zhou Xin, Yang Wenqing, Xiang Rong, et al. Re-examining the potential of using sensitive grain size of coastal muddy sediments as proxy of winter monsoon strength[J]. Quaternary International, 2014, 333: 173−178. doi: 10.1016/j.quaint.2013.12.013
    [8]
    Li Dongling, Li Tiegang, Jiang Hui, et al. East Asian winter monsoon variations and their links to arctic sea ice during the last millennium, inferred from sea surface temperatures in the Okinawa Trough[J]. Paleoceanography and Paleoclimatology, 2018, 33(1): 61−75. doi: 10.1002/2016PA003082
    [9]
    Yang Kaiqing, Hua Wei, Hu Qin. A multi-model analysis of the East Asian monsoon changes in the medieval climate anomaly and Little Ice Age[J]. International Journal of Climatology, 2020, 40(12): 5084−5097. doi: 10.1002/joc.6506
    [10]
    Wang Haoyin, Zhang Lanlan, Xiang Rong, et al. Holocene paleoenvironmental changes in mud area southwest off Cheju Island, East China Sea: evidence from benthic foraminiferal assemblages and stable isotope records[J]. Marine Geology, 2020, 429: 106319. doi: 10.1016/j.margeo.2020.106319
    [11]
    Zhang Kaidi, Li Anchun, Liu Xiting, et al. Heavy mineral record from the East China Sea inner shelf: implications for provenance and climate changes over the past 1500 years[J]. Continental Shelf Research, 2021, 226: 104488. doi: 10.1016/j.csr.2021.104488
    [12]
    Tu Luyao, Zhou Xin, Cheng Wenhan, et al. Holocene East Asian winter monsoon changes reconstructed by sensitive grain size of sediments from Chinese coastal seas: a review[J]. Quaternary International, 2017, 440: 82−90. doi: 10.1016/j.quaint.2016.03.024
    [13]
    Shi Yong, Xu Xiaomei, Sheng Hui, et al. Neglected role of continental circulation in cross-shelf sediment transport: implications for paleoclimate reconstructions[J]. Marine Geology, 2022, 443: 106703. doi: 10.1016/j.margeo.2021.106703
    [14]
    舒卓, 高建华, 石勇, 等. 山东半岛北岸跨锋面物质输运对辽东半岛东岸沉积有机质含量及来源的影响[J]. 海洋通报, 2022, 41(1): 50−60. doi: 10.11840/j.issn.1001-6392.2022.01.006

    Shu Zhuo, Gao Jianhua, Shi Yong, et al. The influence of cross-front sediment transport in north coast of Shandong Peninsula on the content and origin of sedimentary organic matter in east coast of Liaodong Peninsula[J]. Marine Science Bulletin, 2022, 41(1): 50−60. doi: 10.11840/j.issn.1001-6392.2022.01.006
    [15]
    李凡, 姜秀珩, 宋怀龙. 晚更新世以来黄河、长江入海泥沙对南黄海沉积作用的影响[J]. 海洋科学集刊, 1993(1): 61−72.

    Li Fan, Jiang Xuhang, Song huailong. Influence of the Huanghe and Changjiang rivers sediment loads on South Yellow Sea sedimentation since Late Pleistoene[J]. Bulletin of Marine Science, 1993(1): 61−72.
    [16]
    Liu J P, Milliman J D, Gao Shu, et al. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1/4): 45−67.
    [17]
    王伟. 北黄海表层沉积物粒度分布特征及其对沉积环境的指示[D]. 青岛: 中国科学院海洋研究所, 2008.

    Wang Wei. Distribution of surface sediments and sedimentary environment in the North Yellow Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2008.
    [18]
    石勇, 高建华, 刘强, 等. 陆架环流作用下的北黄海中北部细颗粒物质输运[J]. 海洋学报, 2019, 41(4): 53−63.

    Shi Yong, Gao Jianhua, Liu Qiang, et al. Fine sediment transport in north-central of Yellow Sea: the role of continental shelf circulation[J]. Haiyang Xuebao, 2019, 41(4): 53−63.
    [19]
    Shi Y, Gao Jianhua, Sheng Hui, et al. Cross-front sediment transport induced by quick oscillation of the Yellow Sea warm current: evidence from the sedimentary record[J]. Geophysical Research Letters, 2019, 46(1): 226−234. doi: 10.1029/2018GL080751
    [20]
    Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology, 2007, 240(1/4): 169−176.
    [21]
    程鹏, 高抒. 北黄海西部海底沉积物的粒度特征和净输运趋势[J]. 海洋与湖沼, 2000, 31(6): 604−615. doi: 10.3321/j.issn:0029-814X.2000.06.004

    Cheng Peng, Gao Shu. Net sediment transport patterns over the northwestern Yellow Sea, based on grain size trend analysis[J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 604−615. doi: 10.3321/j.issn:0029-814X.2000.06.004
    [22]
    符文侠, 贾锡钧, 魏成凯, 等. 河流泥沙对辽东半岛海岸的填充作用[J]. 黄渤海海洋, 1984, 2(2): 49−55.

    Fu Wenxia, Jia Xijun, Wei Chengkai, et al. Filling effect of discharge silt on the coast in the Liaodong Peninsula[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1984, 2(2): 49−55.
    [23]
    李光天, 符文侠, 贾锡钧. 辽东潮间浅滩的综合特征[J]. 地理学报, 1986, 41(3): 262−273. doi: 10.3321/j.issn:0375-5444.1986.03.008

    Li Guangtian, Fu Wenxia, Jia Xijun. The comprehensive characteristic of the Liaodong Peninsular tidal flat[J]. Acta Geographica Sinica, 1986, 41(3): 262−273. doi: 10.3321/j.issn:0375-5444.1986.03.008
    [24]
    Chen Xiaohui, Li Tiegang, Zhang Xunhua, et al. A Holocene Yalu River-derived fine-grained deposit in the southeast coastal area of the Liaodong Peninsula[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(3): 636−647. doi: 10.1007/s00343-013-2087-1
    [25]
    李艳. 北黄海末次冰消期以来沉积特征及物源环境指示[D]. 青岛: 中国科学院海洋研究所, 2011.

    Li Yan. Sedimentary characteristics and implication to provenance and sedimentary environment since the Last Deglaciation in the North Yellow Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2011.
    [26]
    石勇. 北黄海西部细颗粒物质的跨锋面输运及其沉积环境效应[D]. 南京: 南京大学, 2020.

    Shi Yong. Cross-front transport of fine sediment in the western North Yellow Sea and its sedimentary effects[D]. Nanjing: Nanjing University, 2020.
    [27]
    Goldberg E D, Koide M. Rates of sediment accumulation in the Indian Ocean[M]//Earth Science and Meteoritics. Amsterdam: NorthHolland Publishing Company, 1963: 90−102.
    [28]
    Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494−4506. doi: 10.1002/2015GC006070
    [29]
    Carton J A, Giese B S, Grodsky S A. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis[J]. Journal of Geophysical Research: Oceans, 2005, 110(C9): C09006.
    [30]
    Carton J A, Giese B S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2999−3017. doi: 10.1175/2007MWR1978.1
    [31]
    Giese B S, Ray S. El Niño variability in simple ocean data assimilation (SODA), 1871–2008[J]. Journal of Geophysical Research: Oceans, 2011, 116(C2): C02024.
    [32]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [33]
    Bell B, Hersbach H, Berrisford P, et al. ERA5 monthly averaged data on single levels from 1950 to 1978 (preliminary version)[EB/OL]. (2022–08–03)[2022–08–04]. https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means-preliminary-back-extension?tab=overview . 
    [34]
    Zhou W, Wang X, Zhou T J, et al. Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO[J]. Meteorology and Atmospheric Physics, 2007, 98(3): 283−293.
    [35]
    Wu Bingyi, Wang Jia. Winter arctic oscillation, siberian high and East Asian winter monsoon[J]. Geophysical Research Letters, 2002, 29(19): 1897.
    [36]
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [37]
    林振山, 邓自旺. 子波气候诊断技术的研究[M]. 北京: 气象出版社, 1999.

    Lin Zhenshan, Zheng Ziwang. Studies on Technique of Wavelet Transform in Climate Diagnostics[M]. Beijing: China Meteorological Press, 1999.
    [38]
    程鹏. 北黄海细颗粒物质的沉积特征与输运过程[D]. 青岛: 中国科学院海洋研究所, 2000.

    Cheng Peng. Sediment characteristics and transport processes of fine-grained material over the Northern Yellow Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2000.
    [39]
    王桂芝. 北黄海西部泥质沉积特征与成因探讨[D]. 青岛: 中国科学院海洋研究所, 2001.

    Wang Guizhi. Sedimentary characteristics and mechanism of mud deposits in the Northern Yellow Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2001.
    [40]
    郭世鑫. 近百年来北黄海浮游植物生产力和种群结构变化的生物标志物记录及影响因素[D]. 青岛: 中国海洋大学, 2015.

    Guo Shixin. Biomarker records of phytoplankton productivity and community structure changes of the North Yellow Sea and its influencing factors over the last 100 years[D]. Qingdao: Ocean University of China, 2015.
    [41]
    黄荣辉, 刘永, 皇甫静亮, 等. 20世纪90年代末东亚冬季风年代际变化特征及其内动力成因[J]. 大气科学, 2014, 38(4): 627−644. doi: 10.3878/j.issn.1006-9895.2013.13245

    Huang Ronghui, Liu Yong, Huangfu Jingliang, et al. Characteristics and internal dynamical causes of the interdecadal variability of East Asian winter monsoon near the Late 1990s[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(4): 627−644. doi: 10.3878/j.issn.1006-9895.2013.13245
    [42]
    韩雪, 蔡怡, 陈幸荣, 等. 渤黄海冬季海温异常的时空分布特征及影响因子分析[J]. 热带海洋学报, 2014, 33(5): 1−12. doi: 10.3969/j.issn.1009-5470.2014.05.001

    Han Xue, Cai Yi, Chen Xingrong, et al. Analysis of temporal and spatial distribution characteristics of winter SST anomalies in the Bohai Sea and Yellow Sea and their influencing factors[J]. Journal of Tropical Oceanography, 2014, 33(5): 1−12. doi: 10.3969/j.issn.1009-5470.2014.05.001
    [43]
    Lin Chuanlan, Su Jilan, Xu Bingrong, et al. Long-term variations of temperature and salinity of the Bohai Sea and their influence on its ecosystem[J]. Progress in Oceanography, 2001, 49(1/4): 7−19.
    [44]
    Wei Hao, Shi Jie, Lu Youyu, et al. Interannual and long-term hydrographic changes in the Yellow Sea during 1977–1998[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(11/12): 1025−1034.
    [45]
    罗晓凡, 魏皓, 袁承仪. 利用卫星资料分析黄海海表温度的年际与年代际变化[J]. 中国海洋大学学报, 2012, 42(10): 19−25.

    Luo Xiaofan, Wei Hao, Yuan Chengyi. Inter-annual and decadal variations of sea surface temperature in the Yellow Sea by satellite data[J]. Periodical of Ocean University of China, 2012, 42(10): 19−25.
    [46]
    Yuan Chengyi, Wei Hao, Luo Xiaofan, et al. Linkage between winter temperatures in the Yellow Sea and atmospheric circulation indices[J]. Journal of Ocean University of China, 2019, 18(2): 261−270. doi: 10.1007/s11802-019-3821-x
    [47]
    Li Yan, Mu Lin, Wang Qingyuan, et al. High-quality sea surface temperature measurements along coast of the Bohai and Yellow seas in China and their long-term trends during 1960–2012[J]. International Journal of Climatology, 2020, 40(1): 63−76. doi: 10.1002/joc.6194
    [48]
    Cai Rongshuo, Tan Hongjian, Kontoyiannis H. Robust surface warming in offshore China seas and its relationship to the East Asian monsoon wind field and ocean forcing on interdecadal time scales[J]. Journal of Climate, 2017, 30(22): 8987−9005. doi: 10.1175/JCLI-D-16-0016.1
    [49]
    Xu Xiaomei, Gao Jianhua, Shi Yong, et al. Cross-front transport triggered by winter storms around the Shandong Peninsula, China[J]. Frontiers in Marine Science, 2022, 9: 975504. doi: 10.3389/fmars.2022.975504
    [50]
    Wu Xiao, Wang Houjie, Bi Naishuang, et al. Climate and human battle for dominance over the Yellow River’s sediment discharge: from the Mid-Holocene to the Anthropocene[J]. Marine Geology, 2020, 425: 106188. doi: 10.1016/j.margeo.2020.106188
    [51]
    Wang Houjie, Yang Zuosheng, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57(3/4): 331−354.
    [52]
    Wang Shuai, Fu Bojie, Piao Shilong, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1): 38−41. doi: 10.1038/ngeo2602
    [53]
    Gao Jianhua, Shi Yong, Sheng Hui, et al. Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations[J]. Marine Geology, 2019, 414: 1−17. doi: 10.1016/j.margeo.2019.05.003
    [54]
    杨立建, 马小川, 贾建军, 等. 近百年来黄河改道及输沙量变化对山东半岛泥质楔沉积物粒度特征的影响[J]. 海洋学报, 2020, 42(1): 78−89.

    Yang Lijian, Ma Xiaochuan, Jia Jianjun, et al. Impacts of channel shifts and interannual sediment load reducing of the Yellow River on the grain size characteristics of sediments in the Shandong mud wedge over the past 100 years[J]. Haiyang Xuebao, 2020, 42(1): 78−89.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article views (440) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return